

TensorFlow 2 Object Detection API tutorial

Important

This tutorial is intended for TensorFlow 2.2, which (at the time of writing this tutorial) is the latest stable version of TensorFlow 2.x.

A version for TensorFlow 1.14 can be found here [https://tensorflow-object-detection-api-tutorial.readthedocs.io/en/1.14.2/].

This is a step-by-step tutorial/guide to setting up and using TensorFlow’s Object Detection API to perform, namely, object detection in images/video.

The software tools which we shall use throughout this tutorial are listed in the table below:

	Target Software versions

	OS

	Windows, Linux

	Python

	3.8

	TensorFlow

	2.2.0

	CUDA Toolkit

	10.1

	CuDNN

	7.6.5

	Anaconda

	Python 3.7 (Optional)

Contents:

	Installation
	General Remarks

	Anaconda Python 3.7 (Optional)
	Install Anaconda Python 3.7

	Create a new Anaconda virtual environment

	Activate the Anaconda virtual environment

	TensorFlow Installation
	Install the TensorFlow PIP package

	Verify your Installation

	GPU Support (Optional)
	Install CUDA Toolkit

	Install CUDNN

	Environment Setup

	Update your GPU drivers (Optional)

	Verify the installation

	TensorFlow Object Detection API Installation
	Downloading the TensorFlow Model Garden

	Protobuf Installation/Compilation

	COCO API installation

	Install the Object Detection API

	Test your Installation

	Try out the examples

	LabelImg Installation
	Get from PyPI (Recommended)

	Use precompiled binaries (Easy)

	Build from source (Hard)

	Training Custom Object Detector
	Preparing the Workspace

	Preparing the Dataset
	Annotate Images

	Partition the Dataset

	Create Label Map

	Create TensorFlow Records
	Convert *.xml to *.record

	Configuring a Training Job
	Download Pre-Trained Model

	Configure the Training Pipeline

	Training the Model

	Evaluating the Model (Optional)

	Monitor Training Job Progress using TensorBoard

	Exporting a Trained Inference Graph

	Examples

	Common issues
	Python crashes - TensorFlow GPU

	Cleaning up Nvidia containers (TensorFlow GPU)

	“WARNING:tensorflow:Entity <bound method X of <Y>> could not be transformed …”

	“AttributeError: module ‘google.protobuf.descriptor’ has no attribute ‘_internal_create_key”

	“TypeError: Expected Operation, Variable, or Tensor, got level_5”

Indices and tables

	Index

	Module Index

	Search Page

Installation

General Remarks

	In contrast to TensorFlow 1.x, where different Python packages needed to be installed for one to run TensorFlow on either their CPU or GPU (namely tensorflow and tensorflow-gpu), TensorFlow 2.x only requires that the tensorflow package is installed and automatically checks to see if a GPU can be successfully registered.

Anaconda Python 3.7 (Optional)

Although having Anaconda is not a requirement in order to install and use TensorFlow, I suggest doing so, due to it’s intuitive way of managing packages and setting up new virtual environments. Anaconda is a pretty useful tool, not only for working with TensorFlow, but in general for anyone working in Python, so if you haven’t had a chance to work with it, now is a good chance.

Install Anaconda Python 3.7

WindowsLinux

	Go to https://www.anaconda.com/products/individual and click the “Download” button

	Download the Python 3.7 64-Bit Graphical Installer [https://repo.anaconda.com/archive/Anaconda3-2020.02-Windows-x86_64.exe] or the 32-Bit Graphical Installer [https://repo.anaconda.com/archive/Anaconda3-2020.02-Windows-x86.exe] installer, per your system requirements

	Run the downloaded executable (.exe) file to begin the installation. See here [https://docs.anaconda.com/anaconda/install/windows/] for more details

	(Optional) In the next step, check the box “Add Anaconda3 to my PATH environment variable”. This will make Anaconda your default Python distribution, which should ensure that you have the same default Python distribution across all editors.

	Go to https://www.anaconda.com/products/individual and click the “Download” button

	Download the Python 3.7 64-Bit (x86) Installer [https://repo.anaconda.com/archive/Anaconda3-2020.02-Linux-x86_64.sh]

	Run the downloaded bash script (.sh) file to begin the installation. See here [https://docs.anaconda.com/anaconda/install/linux/] for more details.

	When prompted with the question “Do you wish the installer to prepend the Anaconda<2 or 3> install location to PATH in your /home/<user>/.bashrc ?”, answer “Yes”. If you enter “No”, you must manually add the path to Anaconda or conda will not work.

Create a new Anaconda virtual environment

	Open a new Terminal window

	Type the following command:

conda create -n tensorflow pip python=3.8

	The above will create a new virtual environment with name tensorflow

Important

The term Terminal will be used to refer to the Terminal of your choice (e.g. Command Prompt, Powershell, etc.)

Activate the Anaconda virtual environment

	Activating the newly created virtual environment is achieved by running the following in the Terminal window:

conda activate tensorflow

	Once you have activated your virtual environment, the name of the environment should be displayed within brackets at the beggining of your cmd path specifier, e.g.:

(tensorflow) C:\Users\sglvladi>

Important

Throughout the rest of the tutorial, execution of any commands in a Terminal window should be done after the Anaconda virtual environment has been activated!

TensorFlow Installation

Getting setup with an installation of TensorFlow can be done in 3 simple steps.

Install the TensorFlow PIP package

	Run the following command in a Terminal window:

pip install --ignore-installed --upgrade tensorflow==2.2.0

Verify your Installation

	Run the following command in a Terminal window:

python -c "import tensorflow as tf;print(tf.reduce_sum(tf.random.normal([1000, 1000])))"

	Once the above is run, you should see a print-out similar to the one bellow:

2020-06-22 19:20:32.614181: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'cudart64_101.dll'; dlerror: cudart64_101.dll not found
2020-06-22 19:20:32.620571: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
2020-06-22 19:20:35.027232: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library nvcuda.dll
2020-06-22 19:20:35.060549: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1561] Found device 0 with properties:
pciBusID: 0000:02:00.0 name: GeForce GTX 1070 Ti computeCapability: 6.1
coreClock: 1.683GHz coreCount: 19 deviceMemorySize: 8.00GiB deviceMemoryBandwidth: 238.66GiB/s
2020-06-22 19:20:35.074967: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'cudart64_101.dll'; dlerror: cudart64_101.dll not found
2020-06-22 19:20:35.084458: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'cublas64_10.dll'; dlerror: cublas64_10.dll not found
2020-06-22 19:20:35.094112: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'cufft64_10.dll'; dlerror: cufft64_10.dll not found
2020-06-22 19:20:35.103571: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'curand64_10.dll'; dlerror: curand64_10.dll not found
2020-06-22 19:20:35.113102: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'cusolver64_10.dll'; dlerror: cusolver64_10.dll not found
2020-06-22 19:20:35.123242: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'cusparse64_10.dll'; dlerror: cusparse64_10.dll not found
2020-06-22 19:20:35.140987: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudnn64_7.dll
2020-06-22 19:20:35.146285: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1598] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform.
Skipping registering GPU devices...
2020-06-22 19:20:35.162173: I tensorflow/core/platform/cpu_feature_guard.cc:143] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
2020-06-22 19:20:35.178588: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x15140db6390 initialized for platform Host (this does not guarantee that XLA will be used). Devices:
2020-06-22 19:20:35.185082: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): Host, Default Version
2020-06-22 19:20:35.191117: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1102] Device interconnect StreamExecutor with strength 1 edge matrix:
2020-06-22 19:20:35.196815: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1108]
tf.Tensor(1620.5817, shape=(), dtype=float32)

GPU Support (Optional)

Although using a GPU to run TensorFlow is not necessary, the computational gains are substantial.
Therefore, if your machine is equipped with a compatible CUDA-enabled GPU, it is recommended that
you follow the steps listed below to install the relevant libraries necessary to enable TensorFlow
to make use of your GPU.

By default, when TensorFlow is run it will attempt to register compatible GPU devices. If this
fails, TensorFlow will resort to running on the platform’s CPU. This can also be observed in the
printout shown in the previous section, under the “Verify the install” bullet-point, where there
are a number of messages which report missing library files (e.g. Could not load dynamic library
'cudart64_101.dll'; dlerror: cudart64_101.dll not found).

In order for TensorFlow to run on your GPU, the following requirements must be met:

	Prerequisites

	Nvidia GPU (GTX 650 or newer)

	CUDA Toolkit v10.1

	CuDNN 7.6.5

Install CUDA Toolkit

WindowsLinux

	Follow this link [https://developer.nvidia.com/cuda-10.1-download-archive-update2?target_os=Windows&target_arch=x86_64&target_version=10&target_type=exenetwork] to download and install CUDA Toolkit 10.1

	Installation instructions can be found here [https://docs.nvidia.com/cuda/archive/10.1/cuda-installation-guide-microsoft-windows/index.html]

	Follow this link [https://developer.nvidia.com/cuda-10.1-download-archive-update2?target_os=Linux&target_arch=x86_64] to download and install CUDA Toolkit 10.1 for your Linux distribution.

	Installation instructions can be found here [https://docs.nvidia.com/cuda/archive/10.1/cuda-installation-guide-linux/index.html]

Install CUDNN

WindowsLinux

	Go to https://developer.nvidia.com/rdp/cudnn-download

	Create a user profile if needed and log in

	Select cuDNN v7.6.5 (Nov 5, 2019), for CUDA 10.1 [https://developer.nvidia.com/rdp/cudnn-download#a-collapse765-101]

	Download cuDNN v7.6.5 Library for Windows 10 [https://developer.nvidia.com/compute/machine-learning/cudnn/secure/7.6.5.32/Production/10.1_20191031/cudnn-10.1-windows10-x64-v7.6.5.32.zip]

	Extract the contents of the zip file (i.e. the folder named cuda) inside <INSTALL_PATH>\NVIDIA GPU Computing Toolkit\CUDA\v10.1\, where <INSTALL_PATH> points to the installation directory specified during the installation of the CUDA Toolkit. By default <INSTALL_PATH> = C:\Program Files.

	Go to https://developer.nvidia.com/rdp/cudnn-download

	Create a user profile if needed and log in

	Select cuDNN v7.6.5 (Nov 5, 2019), for CUDA 10.1 [https://developer.nvidia.com/rdp/cudnn-download#a-collapse765-101]

	Download cuDNN v7.6.5 Library for Linux [https://developer.nvidia.com/compute/machine-learning/cudnn/secure/7.6.5.32/Production/10.1_20191031/cudnn-10.1-linux-x64-v7.6.5.32.tgz]

	Follow the instructions under Section 2.3.1 of the CuDNN Installation Guide [https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#install-linux] to install CuDNN.

Environment Setup

WindowsLinux

	Go to Start and Search “environment variables”

	Click “Edit the system environment variables”. This should open the “System Properties” window

	In the opened window, click the “Environment Variables…” button to open the “Environment Variables” window.

	Under “System variables”, search for and click on the Path system variable, then click “Edit…”

	Add the following paths, then click “OK” to save the changes:

	<INSTALL_PATH>\NVIDIA GPU Computing Toolkit\CUDA\v10.1\bin

	<INSTALL_PATH>\NVIDIA GPU Computing Toolkit\CUDA\v10.1\libnvvp

	<INSTALL_PATH>\NVIDIA GPU Computing Toolkit\CUDA\v10.1\extras\CUPTI\libx64

	<INSTALL_PATH>\NVIDIA GPU Computing Toolkit\CUDA\v10.1\cuda\bin

As per Section 7.1.1 of the CUDA Installation Guide for Linux [https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#install-linux], append the following lines to ~/.bashrc:

CUDA related exports
export PATH=/usr/local/cuda-10.1/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-10.1/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

Update your GPU drivers (Optional)

If during the installation of the CUDA Toolkit (see Install CUDA Toolkit) you selected the Express Installation option, then your GPU drivers will have been overwritten by those that come bundled with the CUDA toolkit. These drivers are typically NOT the latest drivers and, thus, you may wish to updte your drivers.

	Go to http://www.nvidia.com/Download/index.aspx

	Select your GPU version to download

	Install the driver for your chosen OS

Verify the installation

	Run the following command in a NEW Terminal window:

python -c "import tensorflow as tf;print(tf.reduce_sum(tf.random.normal([1000, 1000])))"

Important

A new terminal window must be opened for the changes to the Environmental variables to take effect!!

	Once the above is run, you should see a print-out similar to the one bellow:

2020-06-22 20:24:31.355541: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_101.dll
2020-06-22 20:24:33.650692: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library nvcuda.dll
2020-06-22 20:24:33.686846: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1561] Found device 0 with properties:
pciBusID: 0000:02:00.0 name: GeForce GTX 1070 Ti computeCapability: 6.1
coreClock: 1.683GHz coreCount: 19 deviceMemorySize: 8.00GiB deviceMemoryBandwidth: 238.66GiB/s
2020-06-22 20:24:33.697234: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_101.dll
2020-06-22 20:24:33.747540: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cublas64_10.dll
2020-06-22 20:24:33.787573: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cufft64_10.dll
2020-06-22 20:24:33.810063: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library curand64_10.dll
2020-06-22 20:24:33.841474: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cusolver64_10.dll
2020-06-22 20:24:33.862787: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cusparse64_10.dll
2020-06-22 20:24:33.907318: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudnn64_7.dll
2020-06-22 20:24:33.913612: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1703] Adding visible gpu devices: 0
2020-06-22 20:24:33.918093: I tensorflow/core/platform/cpu_feature_guard.cc:143] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
2020-06-22 20:24:33.932784: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x2382acc1c40 initialized for platform Host (this does not guarantee that XLA will be used). Devices:
2020-06-22 20:24:33.939473: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): Host, Default Version
2020-06-22 20:24:33.944570: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1561] Found device 0 with properties:
pciBusID: 0000:02:00.0 name: GeForce GTX 1070 Ti computeCapability: 6.1
coreClock: 1.683GHz coreCount: 19 deviceMemorySize: 8.00GiB deviceMemoryBandwidth: 238.66GiB/s
2020-06-22 20:24:33.953910: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_101.dll
2020-06-22 20:24:33.958772: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cublas64_10.dll
2020-06-22 20:24:33.963656: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cufft64_10.dll
2020-06-22 20:24:33.968210: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library curand64_10.dll
2020-06-22 20:24:33.973389: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cusolver64_10.dll
2020-06-22 20:24:33.978058: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cusparse64_10.dll
2020-06-22 20:24:33.983547: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudnn64_7.dll
2020-06-22 20:24:33.990380: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1703] Adding visible gpu devices: 0
2020-06-22 20:24:35.338596: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1102] Device interconnect StreamExecutor with strength 1 edge matrix:
2020-06-22 20:24:35.344643: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1108] 0
2020-06-22 20:24:35.348795: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1121] 0: N
2020-06-22 20:24:35.353853: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1247] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 6284 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1070 Ti, pci bus id: 0000:02:00.0, compute capability: 6.1)
2020-06-22 20:24:35.369758: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x2384aa9f820 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:
2020-06-22 20:24:35.376320: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): GeForce GTX 1070 Ti, Compute Capability 6.1
tf.Tensor(122.478485, shape=(), dtype=float32)

	Notice from the lines highlighted above that the library files are now Successfully opened and a debugging message is presented to confirm that TensorFlow has successfully Created TensorFlow device.

TensorFlow Object Detection API Installation

Now that you have installed TensorFlow, it is time to install the TensorFlow Object Detection API.

Downloading the TensorFlow Model Garden

	Create a new folder under a path of your choice and name it TensorFlow. (e.g. C:\Users\sglvladi\Documents\TensorFlow).

	From your Terminal cd into the TensorFlow directory.

	To download the models you can either use Git [https://git-scm.com/downloads] to clone the TensorFlow Models repository [https://github.com/tensorflow/models] inside the TensorFlow folder, or you can simply download it as a ZIP [https://github.com/tensorflow/models/archive/master.zip] and extract its contents inside the TensorFlow folder. To keep things consistent, in the latter case you will have to rename the extracted folder models-master to models.

	You should now have a single folder named models under your TensorFlow folder, which contains another 4 folders as such:

TensorFlow/
└─ models/
 ├─ community/
 ├─ official/
 ├─ orbit/
 ├─ research/
 └── ...

Protobuf Installation/Compilation

The Tensorflow Object Detection API uses Protobufs to configure model and
training parameters. Before the framework can be used, the Protobuf libraries
must be downloaded and compiled.

This should be done as follows:

	Head to the protoc releases page [https://github.com/google/protobuf/releases]

	Download the latest protoc-*-*.zip release (e.g. protoc-3.12.3-win64.zip for 64-bit Windows)

	Extract the contents of the downloaded protoc-*-*.zip in a directory <PATH_TO_PB> of your choice (e.g. C:\Program Files\Google Protobuf)

	Add <PATH_TO_PB> to your Path environment variable (see Environment Setup)

	In a new Terminal 1, cd into TensorFlow/models/research/ directory and run the following command:

From within TensorFlow/models/research/
protoc object_detection/protos/*.proto --python_out=.

Important

If you are on Windows and using Protobuf 3.5 or later, the multi-file selection wildcard (i.e *.proto) may not work but you can do one of the following:

Windows PowershellCommand Prompt
From within TensorFlow/models/research/
Get-ChildItem object_detection/protos/*.proto | foreach {protoc "object_detection/protos/$($_.Name)" --python_out=.}

From within TensorFlow/models/research/
for /f %i in ('dir /b object_detection\protos*.proto') do protoc object_detection\protos\%i --python_out=.

	1

	NOTE: You MUST open a new Terminal for the changes in the environment variables to take effect.

COCO API installation

As of TensorFlow 2.x, the pycocotools package is listed as a dependency of the Object Detection API [https://github.com/tensorflow/models/blob/master/research/object_detection/packages/tf2/setup.py]. Ideally, this package should get installed when installing the Object Detection API as documented in the Install the Object Detection API section below, however the installation can fail for various reasons and therefore it is simpler to just install the package beforehand, in which case later installation will be skipped.

WindowsLinux
Run the following command to install pycocotools with Windows support:

pip install cython
pip install git+https://github.com/philferriere/cocoapi.git#subdirectory=PythonAPI

Note that, according to the package’s instructions [https://github.com/philferriere/cocoapi#this-clones-readme], Visual C++ 2015 build tools must be installed and on your path. If they are not, make sure to install them from here [https://go.microsoft.com/fwlink/?LinkId=691126].

Download cocoapi [https://github.com/cocodataset/cocoapi] to a directory of your choice, then make and copy the pycocotools subfolder to the Tensorflow/models/research directory, as such:

git clone https://github.com/cocodataset/cocoapi.git
cd cocoapi/PythonAPI
make
cp -r pycocotools <PATH_TO_TF>/TensorFlow/models/research/

Note

The default metrics are based on those used in Pascal VOC evaluation.

	To use the COCO object detection metrics add metrics_set: "coco_detection_metrics" to the eval_config message in the config file.

	To use the COCO instance segmentation metrics add metrics_set: "coco_mask_metrics" to the eval_config message in the config file.

Install the Object Detection API

Installation of the Object Detection API is achieved by installing the object_detection package. This is done by running the following commands from within Tensorflow\models\research:

From within TensorFlow/models/research/
cp object_detection/packages/tf2/setup.py .
python -m pip install .

Note

During the above installation, you may observe the following error:

ERROR: Command errored out with exit status 1:
 command: 'C:\Users\sglvladi\Anaconda3\envs\tf2\python.exe' -u -c 'import sys, setuptools, tokenize; sys.argv[0] = '"'"'C:\\Users\\sglvladi\\AppData\\Local\\Temp\\pip-install-yn46ecei\\pycocotools\\setup.py'"'"'; __file__='"'"'C:\\Users\\sglvladi\\AppData\\Local\\Temp\\pip-install-yn46ecei\\pycocotools\\setup.py'"'"';f=getattr(tokenize, '"'"'open'"'"', open)(__file__);code=f.read().replace('"'"'\r\n'"'"', '"'"'\n'"'"');f.close();exec(compile(code, __file__, '"'"'exec'"'"'))' install --record 'C:\Users\sglvladi\AppData\Local\Temp\pip-record-wpn7b6qo\install-record.txt' --single-version-externally-managed --compile --install-headers 'C:\Users\sglvladi\Anaconda3\envs\tf2\Include\pycocotools'
 cwd: C:\Users\sglvladi\AppData\Local\Temp\pip-install-yn46ecei\pycocotools\
 Complete output (14 lines):
 running install
 running build
 running build_py
 creating build
 creating build\lib.win-amd64-3.8
 creating build\lib.win-amd64-3.8\pycocotools
 copying pycocotools\coco.py -> build\lib.win-amd64-3.8\pycocotools
 copying pycocotools\cocoeval.py -> build\lib.win-amd64-3.8\pycocotools
 copying pycocotools\mask.py -> build\lib.win-amd64-3.8\pycocotools
 copying pycocotools__init__.py -> build\lib.win-amd64-3.8\pycocotools
 running build_ext
 skipping 'pycocotools_mask.c' Cython extension (up-to-date)
 building 'pycocotools._mask' extension
 error: Microsoft Visual C++ 14.0 is required. Get it with "Build Tools for Visual Studio": https://visualstudio.microsoft.com/downloads/
 --
ERROR: Command errored out with exit status 1: 'C:\Users\sglvladi\Anaconda3\envs\tf2\python.exe' -u -c 'import sys, setuptools, tokenize; sys.argv[0] = '"'"'C:\\Users\\sglvladi\\AppData\\Local\\Temp\\pip-install-yn46ecei\\pycocotools\\setup.py'"'"'; __file__='"'"'C:\\Users\\sglvladi\\AppData\\Local\\Temp\\pip-install-yn46ecei\\pycocotools\\setup.py'"'"';f=getattr(tokenize, '"'"'open'"'"', open)(__file__);code=f.read().replace('"'"'\r\n'"'"', '"'"'\n'"'"');f.close();exec(compile(code, __file__, '"'"'exec'"'"'))' install --record 'C:\Users\sglvladi\AppData\Local\Temp\pip-record-wpn7b6qo\install-record.txt' --single-version-externally-managed --compile --install-headers 'C:\Users\sglvladi\Anaconda3\envs\tf2\Include\pycocotools' Check the logs for full command output.

This is caused because installation of the pycocotools package has failed. To fix this have a look at the COCO API installation section and rerun the above commands.

Test your Installation

To test the installation, run the following command from within Tensorflow\models\research:

From within TensorFlow/models/research/
python object_detection/builders/model_builder_tf2_test.py

Once the above is run, allow some time for the test to complete and once done you should observe a
printout similar to the one below:

...
[OK] ModelBuilderTF2Test.test_create_ssd_models_from_config
[RUN] ModelBuilderTF2Test.test_invalid_faster_rcnn_batchnorm_update
[OK] ModelBuilderTF2Test.test_invalid_faster_rcnn_batchnorm_update
[RUN] ModelBuilderTF2Test.test_invalid_first_stage_nms_iou_threshold
[OK] ModelBuilderTF2Test.test_invalid_first_stage_nms_iou_threshold
[RUN] ModelBuilderTF2Test.test_invalid_model_config_proto
[OK] ModelBuilderTF2Test.test_invalid_model_config_proto
[RUN] ModelBuilderTF2Test.test_invalid_second_stage_batch_size
[OK] ModelBuilderTF2Test.test_invalid_second_stage_batch_size
[RUN] ModelBuilderTF2Test.test_session
[SKIPPED] ModelBuilderTF2Test.test_session
[RUN] ModelBuilderTF2Test.test_unknown_faster_rcnn_feature_extractor
[OK] ModelBuilderTF2Test.test_unknown_faster_rcnn_feature_extractor
[RUN] ModelBuilderTF2Test.test_unknown_meta_architecture
[OK] ModelBuilderTF2Test.test_unknown_meta_architecture
[RUN] ModelBuilderTF2Test.test_unknown_ssd_feature_extractor
[OK] ModelBuilderTF2Test.test_unknown_ssd_feature_extractor
--
Ran 20 tests in 68.510s

OK (skipped=1)

Try out the examples

If the previous step completed successfully it means you have successfully installed all the
components necessary to perform object detection using pre-trained models.

If you want to play around with some examples to see how this can be done, now would be a good
time to have a look at the Examples section.

LabelImg Installation

There exist several ways to install labelImg. Below are 3 of the most common.

Get from PyPI (Recommended)

	Open a new Terminal window and activate the tensorflow_gpu environment (if you have not done so already)

	Run the following command to install labelImg:

pip install labelImg

	labelImg can then be run as follows:

labelImg
or
labelImg [IMAGE_PATH] [PRE-DEFINED CLASS FILE]

Use precompiled binaries (Easy)

Precompiled binaries for both Windows and Linux can be found here [http://tzutalin.github.io/labelImg/] .

Installation is the done in three simple steps:

	Inside you TensorFlow folder, create a new directory, name it addons and then cd into it.

	Download the latest binary for your OS from here [http://tzutalin.github.io/labelImg/]. and extract its contents under Tensorflow/addons/labelImg.

	You should now have a single folder named addons/labelImg under your TensorFlow folder, which contains another 4 folders as such:

TensorFlow/
├─ addons/
│ └─ labelImg/
└─ models/
 ├─ community/
 ├─ official/
 ├─ orbit/
 ├─ research/
 └─ ...

	labelImg can then be run as follows:

From within Tensorflow/addons/labelImg
labelImg
or
labelImg [IMAGE_PATH] [PRE-DEFINED CLASS FILE]

Build from source (Hard)

The steps for installing from source follow below.

1. Download labelImg

	Inside you TensorFlow folder, create a new directory, name it addons and then cd into it.

	To download the package you can either use Git [https://git-scm.com/downloads] to clone the labelImg repo [https://github.com/tzutalin/labelImg] inside the TensorFlow\addons folder, or you can simply download it as a ZIP [https://github.com/tzutalin/labelImg/archive/master.zip] and extract it’s contents inside the TensorFlow\addons folder. To keep things consistent, in the latter case you will have to rename the extracted folder labelImg-master to labelImg. 2

	You should now have a single folder named addons\labelImg under your TensorFlow folder, which contains another 4 folders as such:

TensorFlow/
├─ addons
│ └─ labelImg/
└─ models/
 ├─ community/
 ├─ official/
 ├─ orbit/
 ├─ research/
 └─ ...

	2

	The latest repo commit when writing this tutorial is 8d1bd68 [https://github.com/tzutalin/labelImg/commit/8d1bd68ab66e8c311f2f45154729bba301a81f0b].

2. Install dependencies and compiling package

	Open a new Terminal window and activate the tensorflow_gpu environment (if you have not done so already)

	cd into TensorFlow/addons/labelImg and run the following commands:

WindowsLinux
conda install pyqt=5
pyrcc5 -o libs/resources.py resources.qrc

sudo apt-get install pyqt5-dev-tools
sudo pip install -r requirements/requirements-linux-python3.txt
make qt5py3

3. Test your installation

	Open a new Terminal window and activate the tensorflow_gpu environment (if you have not done so already)

	cd into TensorFlow/addons/labelImg and run the following command:

From within Tensorflow/addons/labelImg
python labelImg.py
or
python labelImg.py [IMAGE_PATH] [PRE-DEFINED CLASS FILE]

Training Custom Object Detector

So, up to now you should have done the following:

	Installed TensorFlow (See TensorFlow Installation)

	Installed TensorFlow Object Detection API (See TensorFlow Object Detection API Installation)

	Installed labelImg (See LabelImg Installation)

Now that we have done all the above, we can start doing some cool stuff. Here we will see how you can train your own object detector, and since it is not as simple as it sounds, we will have a look at:

	How to organise your workspace/training files

	How to prepare/annotate image datasets

	How to generate tf records from such datasets

	How to configure a simple training pipeline

	How to train a model and monitor it’s progress

	How to export the resulting model and use it to detect objects.

Preparing the Workspace

	If you have followed the tutorial, you should by now have a folder Tensorflow, placed under <PATH_TO_TF> (e.g. C:/Users/sglvladi/Documents), with the following directory tree:

TensorFlow/
├─ addons/ (Optional)
│ └─ labelImg/
└─ models/
 ├─ community/
 ├─ official/
 ├─ orbit/
 ├─ research/
 └─ ...

	Now create a new folder under TensorFlow and call it workspace. It is within the workspace that we will store all our training set-ups. Now let’s go under workspace and create another folder named training_demo. Now our directory structure should be as so:

TensorFlow/
├─ addons/ (Optional)
│ └─ labelImg/
├─ models/
│ ├─ community/
│ ├─ official/
│ ├─ orbit/
│ ├─ research/
│ └─ ...
└─ workspace/
 └─ training_demo/

	The training_demo folder shall be our training folder, which will contain all files related to our model training. It is advisable to create a separate training folder each time we wish to train a different model. The typical structure for training folders is shown below.

training_demo/
├─ annotations/
├─ images/
│ ├─ test/
│ └─ train/
├─ models/
├─ pre-trained-models/
└─ README.md

Here’s an explanation for each of the folders/filer shown in the above tree:

	annotations: This folder will be used to store all *.csv files and the respective TensorFlow *.record files, which contain the list of annotations for our dataset images.

	images: This folder contains a copy of all the images in our dataset, as well as the respective *.xml files produced for each one, once labelImg is used to annotate objects.

	images/train: This folder contains a copy of all images, and the respective *.xml files, which will be used to train our model.

	images/test: This folder contains a copy of all images, and the respective *.xml files, which will be used to test our model.

	models: This folder will contain a sub-folder for each of training job. Each subfolder will contain the training pipeline configuration file *.config, as well as all files generated during the training and evaluation of our model.

	pre-trained-models: This folder will contain the downloaded pre-trained models, which shall be used as a starting checkpoint for our training jobs.

	README.md: This is an optional file which provides some general information regarding the training conditions of our model. It is not used by TensorFlow in any way, but it generally helps when you have a few training folders and/or you are revisiting a trained model after some time.

If you do not understand most of the things mentioned above, no need to worry, as we’ll see how all the files are generated further down.

Preparing the Dataset

Annotate Images

To annotate images we will be using the labelImg [https://github.com/tzutalin/labelImg] package. If you haven’t installed the package yet, then have a look at LabelImg Installation.

	Once you have collected all the images to be used to test your model (ideally more than 100 per class), place them inside the folder training_demo/images.

	Open a new Anaconda/Command Prompt window and cd into Tensorflow/addons/labelImg.

	If (as suggested in LabelImg Installation) you created a separate Conda environment for labelImg then go ahead and activate it by running:

activate labelImg

	Next go ahead and start labelImg, pointing it to your training_demo/images folder.

python labelImg.py ../../workspace/training_demo/images

	A File Explorer Dialog windows should open, which points to the training_demo/images folder.

	Press the “Select Folder” button, to start annotating your images.

Once open, you should see a window similar to the one below:

[image: alternate text]
I won’t be covering a tutorial on how to use labelImg, but you can have a look at labelImg’s repo [https://github.com/tzutalin/labelImg#usage] for more details. A nice Youtube video demonstrating how to use labelImg is also available here [https://youtu.be/K_mFnvzyLvc?t=9m13s]. What is important is that once you annotate all your images, a set of new *.xml files, one for each image, should be generated inside your training_demo/images folder.

Partition the Dataset

Once you have finished annotating your image dataset, it is a general convention to use only part of it for training, and the rest is used for evaluation purposes (e.g. as discussed in Evaluating the Model (Optional)).

Typically, the ratio is 90%/10%, i.e. 90% of the images are used for training and the rest 10% is maintained for testing, but you can chose whatever ratio suits your needs.

Once you have decided how you will be splitting your dataset, copy all training images, together with their corresponding *.xml files, and place them inside the training_demo/images/train folder. Similarly, copy all testing images, with their *.xml files, and paste them inside training_demo/images/test.

For lazy people like myself, who cannot be bothered to do the above, I have put tugether a simple script that automates the above process:

""" usage: partition_dataset.py [-h] [-i IMAGEDIR] [-o OUTPUTDIR] [-r RATIO] [-x]

Partition dataset of images into training and testing sets

optional arguments:
 -h, --help show this help message and exit
 -i IMAGEDIR, --imageDir IMAGEDIR
 Path to the folder where the image dataset is stored. If not specified, the CWD will be used.
 -o OUTPUTDIR, --outputDir OUTPUTDIR
 Path to the output folder where the train and test dirs should be created. Defaults to the same directory as IMAGEDIR.
 -r RATIO, --ratio RATIO
 The ratio of the number of test images over the total number of images. The default is 0.1.
 -x, --xml Set this flag if you want the xml annotation files to be processed and copied over.
"""
import os
import re
from shutil import copyfile
import argparse
import math
import random

def iterate_dir(source, dest, ratio, copy_xml):
 source = source.replace('\\', '/')
 dest = dest.replace('\\', '/')
 train_dir = os.path.join(dest, 'train')
 test_dir = os.path.join(dest, 'test')

 if not os.path.exists(train_dir):
 os.makedirs(train_dir)
 if not os.path.exists(test_dir):
 os.makedirs(test_dir)

 images = [f for f in os.listdir(source)
 if re.search(r'([a-zA-Z0-9\s_\\.\-\(\):])+(.jpg|.jpeg|.png)$', f)]

 num_images = len(images)
 num_test_images = math.ceil(ratio*num_images)

 for i in range(num_test_images):
 idx = random.randint(0, len(images)-1)
 filename = images[idx]
 copyfile(os.path.join(source, filename),
 os.path.join(test_dir, filename))
 if copy_xml:
 xml_filename = os.path.splitext(filename)[0]+'.xml'
 copyfile(os.path.join(source, xml_filename),
 os.path.join(test_dir,xml_filename))
 images.remove(images[idx])

 for filename in images:
 copyfile(os.path.join(source, filename),
 os.path.join(train_dir, filename))
 if copy_xml:
 xml_filename = os.path.splitext(filename)[0]+'.xml'
 copyfile(os.path.join(source, xml_filename),
 os.path.join(train_dir, xml_filename))

def main():

 # Initiate argument parser
 parser = argparse.ArgumentParser(description="Partition dataset of images into training and testing sets",
 formatter_class=argparse.RawTextHelpFormatter)
 parser.add_argument(
 '-i', '--imageDir',
 help='Path to the folder where the image dataset is stored. If not specified, the CWD will be used.',
 type=str,
 default=os.getcwd()
)
 parser.add_argument(
 '-o', '--outputDir',
 help='Path to the output folder where the train and test dirs should be created. '
 'Defaults to the same directory as IMAGEDIR.',
 type=str,
 default=None
)
 parser.add_argument(
 '-r', '--ratio',
 help='The ratio of the number of test images over the total number of images. The default is 0.1.',
 default=0.1,
 type=float)
 parser.add_argument(
 '-x', '--xml',
 help='Set this flag if you want the xml annotation files to be processed and copied over.',
 action='store_true'
)
 args = parser.parse_args()

 if args.outputDir is None:
 args.outputDir = args.imageDir

 # Now we are ready to start the iteration
 iterate_dir(args.imageDir, args.outputDir, args.ratio, args.xml)

if __name__ == '__main__':
 main()

	Click here to download the above script and save it inside TensorFlow/scripts/preprocessing.

	Then, cd into TensorFlow/scripts/preprocessing and run:

python partition_dataset.py -x -i [PATH_TO_IMAGES_FOLDER] -r 0.1

For example
python partition_dataset.py -x -i C:/Users/sglvladi/Documents/Tensorflow/workspace/training_demo/images -r 0.1

Once the script has finished, two new folders should have been created under training_demo/images,
namely training_demo/images/train and training_demo/images/test, containing 90% and 10% of
the images (and *.xml files), respectively. To avoid loss of any files, the script will not
delete the images under training_demo/images. Once you have checked that your images have been
safely copied over, you can delete the images under training_demo/images manually.

Create Label Map

TensorFlow requires a label map, which namely maps each of the used labels to an integer values. This label map is used both by the training and detection processes.

Below we show an example label map (e.g label_map.pbtxt), assuming that our dataset containes 2 labels, dogs and cats:

item {
 id: 1
 name: 'cat'
}

item {
 id: 2
 name: 'dog'
}

Label map files have the extention .pbtxt and should be placed inside the training_demo/annotations folder.

Create TensorFlow Records

Now that we have generated our annotations and split our dataset into the desired training and
testing subsets, it is time to convert our annotations into the so called TFRecord format.

Before we proceed to describe the above steps, let’s create a directory where we can store some
scripts. Under the TensorFlow folder, create a new folder TensorFlow/scripts, which we can
use to store some useful scripts. To make things even tidier, let’s create a new folder
TensorFlow/scripts/preprocessing, where we shall store scripts that we can use to preprocess
our training inputs. Below is out TensorFlow directory tree structure, up to now:

TensorFlow/
├─ addons/ (Optional)
│ └─ labelImg/
├─ models/
│ ├─ community/
│ ├─ official/
│ ├─ orbit/
│ ├─ research/
│ └─ ...
├─ scripts/
│ └─ preprocessing/
└─ workspace/
 └─ training_demo/

Convert *.xml to *.record

To do this we can write a simple script that iterates through all *.xml files in the training_demo/images/train and training_demo/images/test folders, and generates a *.record file for each of the two.

Here is an example script that allows us to do just that:

""" Sample TensorFlow XML-to-TFRecord converter

usage: generate_tfrecord.py [-h] [-x XML_DIR] [-l LABELS_PATH] [-o OUTPUT_PATH] [-i IMAGE_DIR] [-c CSV_PATH]

optional arguments:
 -h, --help show this help message and exit
 -x XML_DIR, --xml_dir XML_DIR
 Path to the folder where the input .xml files are stored.
 -l LABELS_PATH, --labels_path LABELS_PATH
 Path to the labels (.pbtxt) file.
 -o OUTPUT_PATH, --output_path OUTPUT_PATH
 Path of output TFRecord (.record) file.
 -i IMAGE_DIR, --image_dir IMAGE_DIR
 Path to the folder where the input image files are stored. Defaults to the same directory as XML_DIR.
 -c CSV_PATH, --csv_path CSV_PATH
 Path of output .csv file. If none provided, then no file will be written.
"""

import os
import glob
import pandas as pd
import io
import xml.etree.ElementTree as ET
import argparse

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # Suppress TensorFlow logging (1)
import tensorflow.compat.v1 as tf
from PIL import Image
from object_detection.utils import dataset_util, label_map_util
from collections import namedtuple

Initiate argument parser
parser = argparse.ArgumentParser(
 description="Sample TensorFlow XML-to-TFRecord converter")
parser.add_argument("-x",
 "--xml_dir",
 help="Path to the folder where the input .xml files are stored.",
 type=str)
parser.add_argument("-l",
 "--labels_path",
 help="Path to the labels (.pbtxt) file.", type=str)
parser.add_argument("-o",
 "--output_path",
 help="Path of output TFRecord (.record) file.", type=str)
parser.add_argument("-i",
 "--image_dir",
 help="Path to the folder where the input image files are stored. "
 "Defaults to the same directory as XML_DIR.",
 type=str, default=None)
parser.add_argument("-c",
 "--csv_path",
 help="Path of output .csv file. If none provided, then no file will be "
 "written.",
 type=str, default=None)

args = parser.parse_args()

if args.image_dir is None:
 args.image_dir = args.xml_dir

label_map = label_map_util.load_labelmap(args.labels_path)
label_map_dict = label_map_util.get_label_map_dict(label_map)

def xml_to_csv(path):
 """Iterates through all .xml files (generated by labelImg) in a given directory and combines
 them in a single Pandas dataframe.

 Parameters:

 path : str
 The path containing the .xml files
 Returns

 Pandas DataFrame
 The produced dataframe
 """

 xml_list = []
 for xml_file in glob.glob(path + '/*.xml'):
 tree = ET.parse(xml_file)
 root = tree.getroot()
 for member in root.findall('object'):
 value = (root.find('filename').text,
 int(root.find('size')[0].text),
 int(root.find('size')[1].text),
 member[0].text,
 int(member[4][0].text),
 int(member[4][1].text),
 int(member[4][2].text),
 int(member[4][3].text)
)
 xml_list.append(value)
 column_name = ['filename', 'width', 'height',
 'class', 'xmin', 'ymin', 'xmax', 'ymax']
 xml_df = pd.DataFrame(xml_list, columns=column_name)
 return xml_df

def class_text_to_int(row_label):
 return label_map_dict[row_label]

def split(df, group):
 data = namedtuple('data', ['filename', 'object'])
 gb = df.groupby(group)
 return [data(filename, gb.get_group(x)) for filename, x in zip(gb.groups.keys(), gb.groups)]

def create_tf_example(group, path):
 with tf.gfile.GFile(os.path.join(path, '{}'.format(group.filename)), 'rb') as fid:
 encoded_jpg = fid.read()
 encoded_jpg_io = io.BytesIO(encoded_jpg)
 image = Image.open(encoded_jpg_io)
 width, height = image.size

 filename = group.filename.encode('utf8')
 image_format = b'jpg'
 xmins = []
 xmaxs = []
 ymins = []
 ymaxs = []
 classes_text = []
 classes = []

 for index, row in group.object.iterrows():
 xmins.append(row['xmin'] / width)
 xmaxs.append(row['xmax'] / width)
 ymins.append(row['ymin'] / height)
 ymaxs.append(row['ymax'] / height)
 classes_text.append(row['class'].encode('utf8'))
 classes.append(class_text_to_int(row['class']))

 tf_example = tf.train.Example(features=tf.train.Features(feature={
 'image/height': dataset_util.int64_feature(height),
 'image/width': dataset_util.int64_feature(width),
 'image/filename': dataset_util.bytes_feature(filename),
 'image/source_id': dataset_util.bytes_feature(filename),
 'image/encoded': dataset_util.bytes_feature(encoded_jpg),
 'image/format': dataset_util.bytes_feature(image_format),
 'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),
 'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),
 'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),
 'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),
 'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
 'image/object/class/label': dataset_util.int64_list_feature(classes),
 }))
 return tf_example

def main(_):

 writer = tf.python_io.TFRecordWriter(args.output_path)
 path = os.path.join(args.image_dir)
 examples = xml_to_csv(args.xml_dir)
 grouped = split(examples, 'filename')
 for group in grouped:
 tf_example = create_tf_example(group, path)
 writer.write(tf_example.SerializeToString())
 writer.close()
 print('Successfully created the TFRecord file: {}'.format(args.output_path))
 if args.csv_path is not None:
 examples.to_csv(args.csv_path, index=None)
 print('Successfully created the CSV file: {}'.format(args.csv_path))

if __name__ == '__main__':
 tf.app.run()

	Click here to download the above script and save it inside TensorFlow/scripts/preprocessing.

	Install the pandas package:

conda install pandas # Anaconda
 # or
pip install pandas # pip

	Finally, cd into TensorFlow/scripts/preprocessing and run:

Create train data:
python generate_tfrecord.py -x [PATH_TO_IMAGES_FOLDER]/train -l [PATH_TO_ANNOTATIONS_FOLDER]/label_map.pbtxt -o [PATH_TO_ANNOTATIONS_FOLDER]/train.record

Create test data:
python generate_tfrecord.py -x [PATH_TO_IMAGES_FOLDER]/test -l [PATH_TO_ANNOTATIONS_FOLDER]/label_map.pbtxt -o [PATH_TO_ANNOTATIONS_FOLDER]/test.record

For example
python generate_tfrecord.py -x C:/Users/sglvladi/Documents/Tensorflow/workspace/training_demo/images/train -l C:/Users/sglvladi/Documents/Tensorflow/workspace/training_demo/annotations/label_map.pbtxt -o C:/Users/sglvladi/Documents/Tensorflow/workspace/training_demo/annotations/train.record
python generate_tfrecord.py -x C:/Users/sglvladi/Documents/Tensorflow/workspace/training_demo/images/test -l C:/Users/sglvladi/Documents/Tensorflow2/workspace/training_demo/annotations/label_map.pbtxt -o C:/Users/sglvladi/Documents/Tensorflow/workspace/training_demo/annotations/test.record

Once the above is done, there should be 2 new files under the training_demo/annotations folder, named test.record and train.record, respectively.

Configuring a Training Job

For the purposes of this tutorial we will not be creating a training job from scratch, but rather
we will reuse one of the pre-trained models provided by TensorFlow. If you would like to train an
entirely new model, you can have a look at TensorFlow’s tutorial [https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/configuring_jobs.md].

The model we shall be using in our examples is the SSD ResNet50 V1 FPN 640x640 [http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_resnet50_v1_fpn_640x640_coco17_tpu-8.tar.gz]
model, since it provides a relatively good trade-off between performance and speed. However, there
exist a number of other models you can use, all of which are listed in TensorFlow 2 Detection Model Zoo [https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md].

Download Pre-Trained Model

To begin with, we need to download the latest pre-trained network for the model we wish to use.
This can be done by simply clicking on the name of the desired model in the table found in
TensorFlow 2 Detection Model Zoo [https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md].
Clicking on the name of your model should initiate a download for a *.tar.gz file.

Once the *.tar.gz file has been downloaded, open it using a decompression program of your
choice (e.g. 7zip, WinZIP, etc.). Next, open the *.tar folder that you see when the compressed
folder is opened, and extract its contents inside the folder training_demo/pre-trained-models.
Since we downloaded the SSD ResNet50 V1 FPN 640x640 [http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_resnet50_v1_fpn_640x640_coco17_tpu-8.tar.gz]
model, our training_demo directory should now look as follows:

training_demo/
├─ ...
├─ pre-trained-models/
| └─ ssd_resnet50_v1_fpn_640x640_coco17_tpu-8/
| ├─ checkpoint/
│ ├─ saved_model/
| └─ pipeline.config
└─ ...

Note that the above process can be repeated for all other pre-trained models you wish to experiment
with. For example, if you wanted to also configure a training job for the EfficientDet D1 640x640 [http://download.tensorflow.org/models/object_detection/tf2/20200711/efficientdet_d1_coco17_tpu-32.tar.gz]
model, you can download the model and after extracting its context the demo directory will be:

training_demo/
├─ ...
├─ pre-trained-models/
│ ├─ efficientdet_d1_coco17_tpu-32/
│ │ ├─ checkpoint/
│ │ ├─ saved_model/
| │ └─ pipeline.config
│ └─ ssd_resnet50_v1_fpn_640x640_coco17_tpu-8/
| ├─ checkpoint/
│ ├─ saved_model/
| └─ pipeline.config
└─ ...

Configure the Training Pipeline

Now that we have downloaded and extracted our pre-trained model, let’s create a directory for our
training job. Under the training_demo/models create a new directory named my_ssd_resnet50_v1_fpn
and copy the training_demo/pre-trained-models/ssd_resnet50_v1_fpn_640x640_coco17_tpu-8/pipeline.config
file inside the newly created directory. Our training_demo/models directory should now look
like this:

training_demo/
├─ ...
├─ models/
│ └─ my_ssd_resnet50_v1_fpn/
| └─ pipeline.config
└─ ...

Now, let’s have a look at the changes that we shall need to apply to the pipeline.config file
(highlighted in yellow):

 1model {
 2 ssd {
 3 num_classes: 1 # Set this to the number of different label classes
 4 image_resizer {
 5 fixed_shape_resizer {
 6 height: 640
 7 width: 640
 8 }
 9 }
 10 feature_extractor {
 11 type: "ssd_resnet50_v1_fpn_keras"
 12 depth_multiplier: 1.0
 13 min_depth: 16
 14 conv_hyperparams {
 15 regularizer {
 16 l2_regularizer {
 17 weight: 0.00039999998989515007
 18 }
 19 }
 20 initializer {
 21 truncated_normal_initializer {
 22 mean: 0.0
 23 stddev: 0.029999999329447746
 24 }
 25 }
 26 activation: RELU_6
 27 batch_norm {
 28 decay: 0.996999979019165
 29 scale: true
 30 epsilon: 0.0010000000474974513
 31 }
 32 }
 33 override_base_feature_extractor_hyperparams: true
 34 fpn {
 35 min_level: 3
 36 max_level: 7
 37 }
 38 }
 39 box_coder {
 40 faster_rcnn_box_coder {
 41 y_scale: 10.0
 42 x_scale: 10.0
 43 height_scale: 5.0
 44 width_scale: 5.0
 45 }
 46 }
 47 matcher {
 48 argmax_matcher {
 49 matched_threshold: 0.5
 50 unmatched_threshold: 0.5
 51 ignore_thresholds: false
 52 negatives_lower_than_unmatched: true
 53 force_match_for_each_row: true
 54 use_matmul_gather: true
 55 }
 56 }
 57 similarity_calculator {
 58 iou_similarity {
 59 }
 60 }
 61 box_predictor {
 62 weight_shared_convolutional_box_predictor {
 63 conv_hyperparams {
 64 regularizer {
 65 l2_regularizer {
 66 weight: 0.00039999998989515007
 67 }
 68 }
 69 initializer {
 70 random_normal_initializer {
 71 mean: 0.0
 72 stddev: 0.009999999776482582
 73 }
 74 }
 75 activation: RELU_6
 76 batch_norm {
 77 decay: 0.996999979019165
 78 scale: true
 79 epsilon: 0.0010000000474974513
 80 }
 81 }
 82 depth: 256
 83 num_layers_before_predictor: 4
 84 kernel_size: 3
 85 class_prediction_bias_init: -4.599999904632568
 86 }
 87 }
 88 anchor_generator {
 89 multiscale_anchor_generator {
 90 min_level: 3
 91 max_level: 7
 92 anchor_scale: 4.0
 93 aspect_ratios: 1.0
 94 aspect_ratios: 2.0
 95 aspect_ratios: 0.5
 96 scales_per_octave: 2
 97 }
 98 }
 99 post_processing {
100 batch_non_max_suppression {
101 score_threshold: 9.99999993922529e-09
102 iou_threshold: 0.6000000238418579
103 max_detections_per_class: 100
104 max_total_detections: 100
105 use_static_shapes: false
106 }
107 score_converter: SIGMOID
108 }
109 normalize_loss_by_num_matches: true
110 loss {
111 localization_loss {
112 weighted_smooth_l1 {
113 }
114 }
115 classification_loss {
116 weighted_sigmoid_focal {
117 gamma: 2.0
118 alpha: 0.25
119 }
120 }
121 classification_weight: 1.0
122 localization_weight: 1.0
123 }
124 encode_background_as_zeros: true
125 normalize_loc_loss_by_codesize: true
126 inplace_batchnorm_update: true
127 freeze_batchnorm: false
128 }
129}
130train_config {
131 batch_size: 8 # Increase/Decrease this value depending on the available memory (Higher values require more memory and vice-versa)
132 data_augmentation_options {
133 random_horizontal_flip {
134 }
135 }
136 data_augmentation_options {
137 random_crop_image {
138 min_object_covered: 0.0
139 min_aspect_ratio: 0.75
140 max_aspect_ratio: 3.0
141 min_area: 0.75
142 max_area: 1.0
143 overlap_thresh: 0.0
144 }
145 }
146 sync_replicas: true
147 optimizer {
148 momentum_optimizer {
149 learning_rate {
150 cosine_decay_learning_rate {
151 learning_rate_base: 0.03999999910593033
152 total_steps: 25000
153 warmup_learning_rate: 0.013333000242710114
154 warmup_steps: 2000
155 }
156 }
157 momentum_optimizer_value: 0.8999999761581421
158 }
159 use_moving_average: false
160 }
161 fine_tune_checkpoint: "pre-trained-models/ssd_resnet50_v1_fpn_640x640_coco17_tpu-8/checkpoint/ckpt-0" # Path to checkpoint of pre-trained model
162 num_steps: 25000
163 startup_delay_steps: 0.0
164 replicas_to_aggregate: 8
165 max_number_of_boxes: 100
166 unpad_groundtruth_tensors: false
167 fine_tune_checkpoint_type: "detection" # Set this to "detection" since we want to be training the full detection model
168 use_bfloat16: false # Set this to false if you are not training on a TPU
169 fine_tune_checkpoint_version: V2
170}
171train_input_reader {
172 label_map_path: "annotations/label_map.pbtxt" # Path to label map file
173 tf_record_input_reader {
174 input_path: "annotations/train.record" # Path to training TFRecord file
175 }
176}
177eval_config {
178 metrics_set: "coco_detection_metrics"
179 use_moving_averages: false
180}
181eval_input_reader {
182 label_map_path: "annotations/label_map.pbtxt" # Path to label map file
183 shuffle: false
184 num_epochs: 1
185 tf_record_input_reader {
186 input_path: "annotations/test.record" # Path to testing TFRecord
187 }
188}

It is worth noting here that the changes to lines 178 to 179 above are optional. These
should only be used if you installed the COCO evaluation tools, as outlined in the
COCO API installation section, and you intend to run evaluation (see Evaluating the Model (Optional)).

Once the above changes have been applied to our config file, go ahead and save it.

Training the Model

Before we begin training our model, let’s go and copy the TensorFlow/models/research/object_detection/model_main_tf2.py
script and paste it straight into our training_demo folder. We will need this script in order
to train our model.

Now, to initiate a new training job, open a new Terminal, cd inside the training_demo
folder and run the following command:

python model_main_tf2.py --model_dir=models/my_ssd_resnet50_v1_fpn --pipeline_config_path=models/my_ssd_resnet50_v1_fpn/pipeline.config

Once the training process has been initiated, you should see a series of print outs similar to the
one below (plus/minus some warnings):

...
WARNING:tensorflow:Unresolved object in checkpoint: (root).model._box_predictor._base_tower_layers_for_heads.class_predictions_with_background.4.10.gamma
W0716 05:24:19.105542 1364 util.py:143] Unresolved object in checkpoint: (root).model._box_predictor._base_tower_layers_for_heads.class_predictions_with_background.4.10.gamma
WARNING:tensorflow:Unresolved object in checkpoint: (root).model._box_predictor._base_tower_layers_for_heads.class_predictions_with_background.4.10.beta
W0716 05:24:19.106541 1364 util.py:143] Unresolved object in checkpoint: (root).model._box_predictor._base_tower_layers_for_heads.class_predictions_with_background.4.10.beta
WARNING:tensorflow:Unresolved object in checkpoint: (root).model._box_predictor._base_tower_layers_for_heads.class_predictions_with_background.4.10.moving_mean
W0716 05:24:19.107540 1364 util.py:143] Unresolved object in checkpoint: (root).model._box_predictor._base_tower_layers_for_heads.class_predictions_with_background.4.10.moving_mean
WARNING:tensorflow:Unresolved object in checkpoint: (root).model._box_predictor._base_tower_layers_for_heads.class_predictions_with_background.4.10.moving_variance
W0716 05:24:19.108539 1364 util.py:143] Unresolved object in checkpoint: (root).model._box_predictor._base_tower_layers_for_heads.class_predictions_with_background.4.10.moving_variance
WARNING:tensorflow:A checkpoint was restored (e.g. tf.train.Checkpoint.restore or tf.keras.Model.load_weights) but not all checkpointed values were used. See above for specific issues. Use expect_partial() on the load status object, e.g. tf.train.Checkpoint.restore(...).expect_partial(), to silence these warnings, or use assert_consumed() to make the check explicit. See https://www.tensorflow.org/guide/checkpoint#loading_mechanics for details.
W0716 05:24:19.108539 1364 util.py:151] A checkpoint was restored (e.g. tf.train.Checkpoint.restore or tf.keras.Model.load_weights) but not all checkpointed values were used. See above for specific issues. Use expect_partial() on the load status object, e.g. tf.train.Checkpoint.restore(...).expect_partial(), to silence these warnings, or use assert_consumed() to make the check explicit. See https://www.tensorflow.org/guide/checkpoint#loading_mechanics for details.
WARNING:tensorflow:num_readers has been reduced to 1 to match input file shards.
INFO:tensorflow:Step 100 per-step time 1.153s loss=0.761
I0716 05:26:55.879558 1364 model_lib_v2.py:632] Step 100 per-step time 1.153s loss=0.761
...

Important

The output will normally look like it has “frozen”, but DO NOT rush to cancel the process. The
training outputs logs only every 100 steps by default, therefore if you wait for a while, you
should see a log for the loss at step 100.

The time you should wait can vary greatly, depending on whether you are using a GPU and the
chosen value for batch_size in the config file, so be patient.

If you ARE observing a similar output to the above, then CONGRATULATIONS, you have successfully
started your first training job. Now you may very well treat yourself to a cold beer, as waiting
on the training to finish is likely to take a while. Following what people have said online, it
seems that it is advisable to allow you model to reach a TotalLoss of at least 2 (ideally 1
and lower) if you want to achieve “fair” detection results. Obviously, lower TotalLoss is
better, however very low TotalLoss should be avoided, as the model may end up overfitting the
dataset, meaning that it will perform poorly when applied to images outside the dataset. To
monitor TotalLoss, as well as a number of other metrics, while your model is training, have a
look at Monitor Training Job Progress using TensorBoard.

If you ARE NOT seeing a print-out similar to that shown above, and/or the training job crashes
after a few seconds, then have a look at the issues and proposed solutions, under the
Common issues section, to see if you can find a solution. Alternatively, you can try the issues
section of the official Tensorflow Models repo [https://github.com/tensorflow/models/issues].

Note

Training times can be affected by a number of factors such as:

	The computational power of you hardware (either CPU or GPU): Obviously, the more powerful your PC is, the faster the training process.

	Whether you are using the TensorFlow CPU or GPU variant: In general, even when compared to the best CPUs, almost any GPU graphics card will yield much faster training and detection speeds. As a matter of fact, when I first started I was running TensorFlow on my Intel i7-5930k (6/12 cores @ 4GHz, 32GB RAM) and was getting step times of around 12 sec/step, after which I installed TensorFlow GPU and training the very same model -using the same dataset and config files- on a EVGA GTX-770 (1536 CUDA-cores @ 1GHz, 2GB VRAM) I was down to 0.9 sec/step!!! A 12-fold increase in speed, using a “low/mid-end” graphics card, when compared to a “mid/high-end” CPU.

	The complexity of the objects you are trying to detect: Obviously, if your objective is to track a black ball over a white background, the model will converge to satisfactory levels of detection pretty quickly. If on the other hand, for example, you wish to detect ships in ports, using Pan-Tilt-Zoom cameras, then training will be a much more challenging and time-consuming process, due to the high variability of the shape and size of ships, combined with a highly dynamic background.

	And many, many, many, more….

Evaluating the Model (Optional)

By default, the training process logs some basic measures of training performance. These seem to
change depending on the installed version of Tensorflow.

As you will have seen in various parts of this tutorial, we have mentioned a few times the
optional utilisation of the COCO evaluation metrics. Also, under section
_image_partitioning_sec we partitioned our dataset in two parts, where one was to be used
for training and the other for evaluation. In this section we will look at how we can use these
metrics, along with the test images, to get a sense of the performance achieved by our model as it
is being trained.

Firstly, let’s start with a brief explanation of what the evaluation process does. While the
training process runs, it will occasionally create checkpoint files inside the
training_demo/training folder, which correspond to snapshots of the model at given steps. When
a set of such new checkpoint files is generated, the evaluation process uses these files and
evaluates how well the model performs in detecting objects in the test dataset. The results of
this evaluation are summarised in the form of some metrics, which can be examined over time.

The steps to run the evaluation are outlined below:

	Firstly we need to download and install the metrics we want to use.

	For a description of the supported object detection evaluation metrics, see here [https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/evaluation_protocols.md].

	The process of installing the COCO evaluation metrics is described in COCO API installation.

	Secondly, we must modify the configuration pipeline (*.config script).

	See lines 178 and 181 of the script in Configuring a Training Job.

	The third step is to actually run the evaluation. To do so, open a new Terminal, cd inside the training_demo folder and run the following command:

python model_main_tf2.py --model_dir=models/my_ssd_resnet50_v1_fpn --pipeline_config_path=models/my_ssd_resnet50_v1_fpn/pipeline.config --checkpoint_dir=models/my_ssd_resnet50_v1_fpn

Once the above is run, you should see a checkpoint similar to the one below (plus/minus some warnings):

...
WARNING:tensorflow:From C:\Users\sglvladi\Anaconda3\envs\tf2\lib\site-packages\object_detection\inputs.py:79: sparse_to_dense (from tensorflow.python.ops.sparse_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Create a `tf.sparse.SparseTensor` and use `tf.sparse.to_dense` instead.
W0716 05:44:10.059399 17144 deprecation.py:317] From C:\Users\sglvladi\Anaconda3\envs\tf2\lib\site-packages\object_detection\inputs.py:79: sparse_to_dense (from tensorflow.python.ops.sparse_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Create a `tf.sparse.SparseTensor` and use `tf.sparse.to_dense` instead.
WARNING:tensorflow:From C:\Users\sglvladi\Anaconda3\envs\tf2\lib\site-packages\object_detection\inputs.py:259: to_float (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.cast` instead.
W0716 05:44:12.383937 17144 deprecation.py:317] From C:\Users\sglvladi\Anaconda3\envs\tf2\lib\site-packages\object_detection\inputs.py:259: to_float (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.cast` instead.
INFO:tensorflow:Waiting for new checkpoint at models/my_ssd_resnet50_v1_fpn
I0716 05:44:22.779590 17144 checkpoint_utils.py:125] Waiting for new checkpoint at models/my_ssd_resnet50_v1_fpn
INFO:tensorflow:Found new checkpoint at models/my_ssd_resnet50_v1_fpn\ckpt-2
I0716 05:44:22.882485 17144 checkpoint_utils.py:134] Found new checkpoint at models/my_ssd_resnet50_v1_fpn\ckpt-2

While the evaluation process is running, it will periodically check (every 300 sec by default) and
use the latest models/my_ssd_resnet50_v1_fpn/ckpt-* checkpoint files to evaluate the performance
of the model. The results are stored in the form of tf event files (events.out.tfevents.*)
inside models/my_ssd_resnet50_v1_fpn/eval_0. These files can then be used to monitor the
computed metrics, using the process described by the next section.

Monitor Training Job Progress using TensorBoard

A very nice feature of TensorFlow, is that it allows you to coninuously monitor and visualise a
number of different training/evaluation metrics, while your model is being trained. The specific
tool that allows us to do all that is Tensorboard [https://www.tensorflow.org/tensorboard].

To start a new TensorBoard server, we follow the following steps:

	Open a new Anaconda/Command Prompt

	Activate your TensorFlow conda environment (if you have one), e.g.:

activate tensorflow_gpu

	cd into the training_demo folder.

	Run the following command:

tensorboard --logdir=models/my_ssd_resnet50_v1_fpn

The above command will start a new TensorBoard server, which (by default) listens to port 6006 of
your machine. Assuming that everything went well, you should see a print-out similar to the one
below (plus/minus some warnings):

...
TensorBoard 2.2.2 at http://localhost:6006/ (Press CTRL+C to quit)

Once this is done, go to your browser and type http://localhost:6006/ in your address bar,
following which you should be presented with a dashboard similar to the one shown below
(maybe less populated if your model has just started training):

[image: alternate text]

Exporting a Trained Inference Graph

Once your training job is complete, you need to extract the newly trained inference graph, which
will be later used to perform the object detection. This can be done as follows:

	Copy the TensorFlow/models/research/object_detection/exporter_main_v2.py script and paste it straight into your training_demo folder.

	Now, open a Terminal, cd inside your training_demo folder, and run the following command:

python .\exporter_main_v2.py --input_type image_tensor --pipeline_config_path .\models\my_efficientdet_d1\pipeline.config --trained_checkpoint_dir .\models\my_efficientdet_d1\ --output_directory .\trained-inference-graphs\output

Note

You may get the following error when trying to export your model:

Traceback (most recent call last):
 File ".\exporter_main_v2.py", line 126, in <module>
 app.run(main)
 File "C:\Users\sglvladi\Anaconda3\envs\tf2\lib\site-packages\absl\app.py", line 299, in run
 _run_main(main, args)
 ...
 File "C:\Users\sglvladi\Anaconda3\envs\tf2\lib\site-packages\tensorflow\python\keras\engine\base_layer.py", line 1627, in get_losses_for
 reachable = tf_utils.get_reachable_from_inputs(inputs, losses)
 File "C:\Users\sglvladi\Anaconda3\envs\tf2\lib\site-packages\tensorflow\python\keras\utils\tf_utils.py", line 140, in get_reachable_from_inputs
 raise TypeError('Expected Operation, Variable, or Tensor, got ' + str(x))
TypeError: Expected Operation, Variable, or Tensor, got level_5

If this happens, have a look at the “TypeError: Expected Operation, Variable, or Tensor, got level_5” issue section for a potential solution.

Examples

Below is a gallery of examples

[image: Detect Objects Using Your Webcam]
Detect Objects Using Your Webcam

[image: Object Detection Test]
Object Detection Test

Download all examples in Python source code: auto_examples_python.zip

Download all examples in Jupyter notebooks: auto_examples_jupyter.zip

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here
to download the full example code

Detect Objects Using Your Webcam

This demo will take you through the steps of running an “out-of-the-box” detection model to
detect objects in the video stream extracted from your camera.

Create the data directory

The snippet shown below will create the data directory where all our data will be stored. The
code will create a directory structure as shown bellow:

data
└── models

where the models folder will will contain the downloaded models.

import os

DATA_DIR = os.path.join(os.getcwd(), 'data')
MODELS_DIR = os.path.join(DATA_DIR, 'models')
for dir in [DATA_DIR, MODELS_DIR]:
 if not os.path.exists(dir):
 os.mkdir(dir)

Download the model

The code snippet shown below is used to download the object detection model checkpoint file,
as well as the labels file (.pbtxt) which contains a list of strings used to add the correct
label to each detection (e.g. person).

The particular detection algorithm we will use is the SSD ResNet101 V1 FPN 640x640. More
models can be found in the TensorFlow 2 Detection Model Zoo [https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md].
To use a different model you will need the URL name of the specific model. This can be done as
follows:

	Right click on the Model name of the model you would like to use;

	Click on Copy link address to copy the download link of the model;

	Paste the link in a text editor of your choice. You should observe a link similar to download.tensorflow.org/models/object_detection/tf2/YYYYYYYY/XXXXXXXXX.tar.gz;

	Copy the XXXXXXXXX part of the link and use it to replace the value of the MODEL_NAME variable in the code shown below;

	Copy the YYYYYYYY part of the link and use it to replace the value of the MODEL_DATE variable in the code shown below.

For example, the download link for the model used below is: download.tensorflow.org/models/object_detection/tf2/20200711/ssd_resnet101_v1_fpn_640x640_coco17_tpu-8.tar.gz

import tarfile
import urllib.request

Download and extract model
MODEL_DATE = '20200711'
MODEL_NAME = 'ssd_resnet101_v1_fpn_640x640_coco17_tpu-8'
MODEL_TAR_FILENAME = MODEL_NAME + '.tar.gz'
MODELS_DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/tf2/'
MODEL_DOWNLOAD_LINK = MODELS_DOWNLOAD_BASE + MODEL_DATE + '/' + MODEL_TAR_FILENAME
PATH_TO_MODEL_TAR = os.path.join(MODELS_DIR, MODEL_TAR_FILENAME)
PATH_TO_CKPT = os.path.join(MODELS_DIR, os.path.join(MODEL_NAME, 'checkpoint/'))
PATH_TO_CFG = os.path.join(MODELS_DIR, os.path.join(MODEL_NAME, 'pipeline.config'))
if not os.path.exists(PATH_TO_CKPT):
 print('Downloading model. This may take a while... ', end='')
 urllib.request.urlretrieve(MODEL_DOWNLOAD_LINK, PATH_TO_MODEL_TAR)
 tar_file = tarfile.open(PATH_TO_MODEL_TAR)
 tar_file.extractall(MODELS_DIR)
 tar_file.close()
 os.remove(PATH_TO_MODEL_TAR)
 print('Done')

Download labels file
LABEL_FILENAME = 'mscoco_label_map.pbtxt'
LABELS_DOWNLOAD_BASE = \
 'https://raw.githubusercontent.com/tensorflow/models/master/research/object_detection/data/'
PATH_TO_LABELS = os.path.join(MODELS_DIR, os.path.join(MODEL_NAME, LABEL_FILENAME))
if not os.path.exists(PATH_TO_LABELS):
 print('Downloading label file... ', end='')
 urllib.request.urlretrieve(LABELS_DOWNLOAD_BASE + LABEL_FILENAME, PATH_TO_LABELS)
 print('Done')

Load the model

Next we load the downloaded model

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # Suppress TensorFlow logging
import tensorflow as tf
from object_detection.utils import label_map_util
from object_detection.utils import config_util
from object_detection.utils import visualization_utils as viz_utils
from object_detection.builders import model_builder

tf.get_logger().setLevel('ERROR') # Suppress TensorFlow logging (2)

Enable GPU dynamic memory allocation
gpus = tf.config.experimental.list_physical_devices('GPU')
for gpu in gpus:
 tf.config.experimental.set_memory_growth(gpu, True)

Load pipeline config and build a detection model
configs = config_util.get_configs_from_pipeline_file(PATH_TO_CFG)
model_config = configs['model']
detection_model = model_builder.build(model_config=model_config, is_training=False)

Restore checkpoint
ckpt = tf.compat.v2.train.Checkpoint(model=detection_model)
ckpt.restore(os.path.join(PATH_TO_CKPT, 'ckpt-0')).expect_partial()

@tf.function
def detect_fn(image):
 """Detect objects in image."""

 image, shapes = detection_model.preprocess(image)
 prediction_dict = detection_model.predict(image, shapes)
 detections = detection_model.postprocess(prediction_dict, shapes)

 return detections, prediction_dict, tf.reshape(shapes, [-1])

Load label map data (for plotting)

Label maps correspond index numbers to category names, so that when our convolution network
predicts 5, we know that this corresponds to airplane. Here we use internal utility
functions, but anything that returns a dictionary mapping integers to appropriate string labels
would be fine.

category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS,
 use_display_name=True)

Define the video stream

We will use OpenCV [https://pypi.org/project/opencv-python/] to capture the video stream
generated by our webcam. For more information you can refer to the OpenCV-Python Tutorials [https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_gui/py_video_display/py_video_display.html#capture-video-from-camera]

import cv2

cap = cv2.VideoCapture(0)

Putting everything together

The code shown below loads an image, runs it through the detection model and visualizes the
detection results, including the keypoints.

Note that this will take a long time (several minutes) the first time you run this code due to
tf.function’s trace-compilation — on subsequent runs (e.g. on new images), things will be
faster.

Here are some simple things to try out if you are curious:

	Modify some of the input images and see if detection still works. Some simple things to try out here (just uncomment the relevant portions of code) include flipping the image horizontally, or converting to grayscale (note that we still expect the input image to have 3 channels).

	Print out detections[‘detection_boxes’] and try to match the box locations to the boxes in the image. Notice that coordinates are given in normalized form (i.e., in the interval [0, 1]).

	Set min_score_thresh to other values (between 0 and 1) to allow more detections in or to filter out more detections.

import numpy as np

while True:
 # Read frame from camera
 ret, image_np = cap.read()

 # Expand dimensions since the model expects images to have shape: [1, None, None, 3]
 image_np_expanded = np.expand_dims(image_np, axis=0)

 # Things to try:
 # Flip horizontally
 # image_np = np.fliplr(image_np).copy()

 # Convert image to grayscale
 # image_np = np.tile(
 # np.mean(image_np, 2, keepdims=True), (1, 1, 3)).astype(np.uint8)

 input_tensor = tf.convert_to_tensor(np.expand_dims(image_np, 0), dtype=tf.float32)
 detections, predictions_dict, shapes = detect_fn(input_tensor)

 label_id_offset = 1
 image_np_with_detections = image_np.copy()

 viz_utils.visualize_boxes_and_labels_on_image_array(
 image_np_with_detections,
 detections['detection_boxes'][0].numpy(),
 (detections['detection_classes'][0].numpy() + label_id_offset).astype(int),
 detections['detection_scores'][0].numpy(),
 category_index,
 use_normalized_coordinates=True,
 max_boxes_to_draw=200,
 min_score_thresh=.30,
 agnostic_mode=False)

 # Display output
 cv2.imshow('object detection', cv2.resize(image_np_with_detections, (800, 600)))

 if cv2.waitKey(25) & 0xFF == ord('q'):
 break

cap.release()
cv2.destroyAllWindows()

Total running time of the script: (0 minutes 0.000 seconds)

Download Python source code: object_detection_camera.py

Download Jupyter notebook: object_detection_camera.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here to download the full example code

Object Detection Test

This demo will take you through the steps of running an “out-of-the-box” detection model on a
collection of images.

Create the data directory

The snippet shown below will create the data directory where all our data will be stored. The
code will create a directory structure as shown bellow:

data
├── images
└── models

where the images folder will contain the downlaoded test images, while models will
contain the downloaded models.

import os

DATA_DIR = os.path.join(os.getcwd(), 'data')
IMAGES_DIR = os.path.join(DATA_DIR, 'images')
MODELS_DIR = os.path.join(DATA_DIR, 'models')
for dir in [DATA_DIR, IMAGES_DIR, MODELS_DIR]:
 if not os.path.exists(dir):
 os.mkdir(dir)

Download the test images

First we will download the images that we will use throughout this tutorial. The code snippet
shown bellow will download the test images from the TensorFlow Model Garden [https://github.com/tensorflow/models/tree/master/research/object_detection/test_images]
and save them inside the data/images folder.

import urllib.request

IMAGE_FILENAMES = ['image1.jpg', 'image2.jpg']
IMAGES_DOWNLOAD_BASE = \
 'https://raw.githubusercontent.com/tensorflow/models/master/research/object_detection/test_images/'

for image_filename in IMAGE_FILENAMES:

 image_path = os.path.join(IMAGES_DIR, image_filename)

 # Download image
 if not os.path.exists(image_path):
 print('Downloading {}... '.format(image_filename), end='')
 urllib.request.urlretrieve(IMAGES_DOWNLOAD_BASE + image_filename, image_path)
 print('Done')

Out:

Downloading image1.jpg... Done
Downloading image2.jpg... Done

Download the model

The code snippet shown below is used to download the object detection model checkpoint file,
as well as the labels file (.pbtxt) which contains a list of strings used to add the correct
label to each detection (e.g. person). Once downloaded the files will be stored under the
data/models folder.

The particular detection algorithm we will use is the CenterNet HourGlass104 1024x1024. More
models can be found in the TensorFlow 2 Detection Model Zoo [https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md].
To use a different model you will need the URL name of the specific model. This can be done as
follows:

	Right click on the Model name of the model you would like to use;

	Click on Copy link address to copy the download link of the model;

	Paste the link in a text editor of your choice. You should observe a link similar to download.tensorflow.org/models/object_detection/tf2/YYYYYYYY/XXXXXXXXX.tar.gz;

	Copy the XXXXXXXXX part of the link and use it to replace the value of the MODEL_NAME variable in the code shown below;

	Copy the YYYYYYYY part of the link and use it to replace the value of the MODEL_DATE variable in the code shown below.

For example, the download link for the model used below is: download.tensorflow.org/models/object_detection/tf2/20200711/centernet_hg104_1024x1024_coco17_tpu-32.tar.gz

import tarfile

Download and extract model
MODEL_DATE = '20200711'
MODEL_NAME = 'centernet_hg104_1024x1024_coco17_tpu-32'
MODEL_TAR_FILENAME = MODEL_NAME + '.tar.gz'
MODELS_DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/tf2/'
MODEL_DOWNLOAD_LINK = MODELS_DOWNLOAD_BASE + MODEL_DATE + '/' + MODEL_TAR_FILENAME
PATH_TO_MODEL_TAR = os.path.join(MODELS_DIR, MODEL_TAR_FILENAME)
PATH_TO_CKPT = os.path.join(MODELS_DIR, os.path.join(MODEL_NAME, 'checkpoint/'))
PATH_TO_CFG = os.path.join(MODELS_DIR, os.path.join(MODEL_NAME, 'pipeline.config'))
if not os.path.exists(PATH_TO_CKPT):
 print('Downloading model. This may take a while... ', end='')
 urllib.request.urlretrieve(MODEL_DOWNLOAD_LINK, PATH_TO_MODEL_TAR)
 tar_file = tarfile.open(PATH_TO_MODEL_TAR)
 tar_file.extractall(MODELS_DIR)
 tar_file.close()
 os.remove(PATH_TO_MODEL_TAR)
 print('Done')

Download labels file
LABEL_FILENAME = 'mscoco_label_map.pbtxt'
LABELS_DOWNLOAD_BASE = \
 'https://raw.githubusercontent.com/tensorflow/models/master/research/object_detection/data/'
PATH_TO_LABELS = os.path.join(MODELS_DIR, os.path.join(MODEL_NAME, LABEL_FILENAME))
if not os.path.exists(PATH_TO_LABELS):
 print('Downloading label file... ', end='')
 urllib.request.urlretrieve(LABELS_DOWNLOAD_BASE + LABEL_FILENAME, PATH_TO_LABELS)
 print('Done')

Out:

Downloading model. This may take a while... Done
Downloading label file... Done

Load the model

Next we load the downloaded model

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # Suppress TensorFlow logging (1)
import tensorflow as tf
from object_detection.utils import label_map_util
from object_detection.utils import config_util
from object_detection.utils import visualization_utils as viz_utils
from object_detection.builders import model_builder

tf.get_logger().setLevel('ERROR') # Suppress TensorFlow logging (2)

Enable GPU dynamic memory allocation
gpus = tf.config.experimental.list_physical_devices('GPU')
for gpu in gpus:
 tf.config.experimental.set_memory_growth(gpu, True)

Load pipeline config and build a detection model
configs = config_util.get_configs_from_pipeline_file(PATH_TO_CFG)
model_config = configs['model']
detection_model = model_builder.build(model_config=model_config, is_training=False)

Restore checkpoint
ckpt = tf.compat.v2.train.Checkpoint(
 model=detection_model)
ckpt.restore(os.path.join(PATH_TO_CKPT, 'ckpt-0')).expect_partial()

@tf.function
def detect_fn(image):
 """Detect objects in image."""

 image, shapes = detection_model.preprocess(image)
 prediction_dict = detection_model.predict(image, shapes)
 detections = detection_model.postprocess(prediction_dict, shapes)

 return detections, prediction_dict, tf.reshape(shapes, [-1])

Load label map data (for plotting)

Label maps correspond index numbers to category names, so that when our convolution network
predicts 5, we know that this corresponds to airplane. Here we use internal utility
functions, but anything that returns a dictionary mapping integers to appropriate string labels
would be fine.

category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS,
 use_display_name=True)

Putting everything together

The code shown below loads an image, runs it through the detection model and visualizes the
detection results, including the keypoints.

Note that this will take a long time (several minutes) the first time you run this code due to
tf.function’s trace-compilation — on subsequent runs (e.g. on new images), things will be
faster.

Here are some simple things to try out if you are curious:

	Modify some of the input images and see if detection still works. Some simple things to try out here (just uncomment the relevant portions of code) include flipping the image horizontally, or converting to grayscale (note that we still expect the input image to have 3 channels).

	Print out detections[‘detection_boxes’] and try to match the box locations to the boxes in the image. Notice that coordinates are given in normalized form (i.e., in the interval [0, 1]).

	Set min_score_thresh to other values (between 0 and 1) to allow more detections in or to filter out more detections.

import numpy as np
from six import BytesIO
from PIL import Image
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore') # Suppress Matplotlib warnings

def load_image_into_numpy_array(path):
 """Load an image from file into a numpy array.

 Puts image into numpy array to feed into tensorflow graph.
 Note that by convention we put it into a numpy array with shape
 (height, width, channels), where channels=3 for RGB.

 Args:
 path: the file path to the image

 Returns:
 uint8 numpy array with shape (img_height, img_width, 3)
 """
 img_data = tf.io.gfile.GFile(path, 'rb').read()
 image = Image.open(BytesIO(img_data))
 (im_width, im_height) = image.size
 return np.array(image.getdata()).reshape(
 (im_height, im_width, 3)).astype(np.uint8)

for image_filename in IMAGE_FILENAMES:

 print('Running inference for {}... '.format(image_filename), end='')

 image_path = os.path.join(IMAGES_DIR, image_filename)
 image_np = load_image_into_numpy_array(image_path)

 # Things to try:
 # Flip horizontally
 # image_np = np.fliplr(image_np).copy()

 # Convert image to grayscale
 # image_np = np.tile(
 # np.mean(image_np, 2, keepdims=True), (1, 1, 3)).astype(np.uint8)

 input_tensor = tf.convert_to_tensor(
 np.expand_dims(image_np, 0), dtype=tf.float32)
 detections, predictions_dict, shapes = detect_fn(input_tensor)

 label_id_offset = 1
 image_np_with_detections = image_np.copy()

 viz_utils.visualize_boxes_and_labels_on_image_array(
 image_np_with_detections,
 detections['detection_boxes'][0].numpy(),
 (detections['detection_classes'][0].numpy() + label_id_offset).astype(int),
 detections['detection_scores'][0].numpy(),
 category_index,
 use_normalized_coordinates=True,
 max_boxes_to_draw=200,
 min_score_thresh=.30,
 agnostic_mode=False)

 plt.figure()
 plt.imshow(image_np_with_detections)
 print('Done')
plt.show()

sphinx_gallery_thumbnail_number = 2

	[image: plot object detection simple]

	[image: plot object detection simple]

Out:

Running inference for image1.jpg... Done
Running inference for image2.jpg... Done

Total running time of the script: (2 minutes 29.261 seconds)

Download Python source code: plot_object_detection_simple.py

Download Jupyter notebook: plot_object_detection_simple.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Common issues

Below is a list of common issues encountered while using TensorFlow for objects detection.

Python crashes - TensorFlow GPU

If you are using GPU Support (Optional) and when you try to run some Python object detection script (e.g. Test your Installation), after a few seconds, Windows reports that Python has crashed then have a look at the Anaconda/Command Prompt window you used to run the script and check for a line similar (maybe identical) to the one below:

2018-03-22 03:07:54.623130: E C:\tf_jenkins\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\stream_executor\cuda\cuda_dnn.cc:378] Loaded runtime CuDNN library: 7101 (compatibility version 7100) but source was compiled with 7003 (compatibility version 7000). If using a binary install, upgrade your CuDNN library to match. If building from sources, make sure the library loaded at runtime matches a compatible version specified during compile configuration.

If the above line is present in the printed debugging, it means that you have not installed the correct version of the cuDNN libraries. In this case make sure you re-do the Install CUDNN step, making sure you instal cuDNN v7.0.5.

Cleaning up Nvidia containers (TensorFlow GPU)

Sometimes, when terminating a TensorFlow training process, the Nvidia containers associated to the process are not cleanly terminated. This can lead to bogus errors when we try to run a new TensorFlow process.

Some known issues caused by the above are presented below:

	Failure to restart training of a model. Look for the following errors in the debugging:

2018-03-23 03:03:10.326902: E C:\tf_jenkins\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\stream_executor\cuda\cuda_dnn.cc:385] could not create cudnn handle: CUDNN_STATUS_ALLOC_FAILED
2018-03-23 03:03:10.330475: E C:\tf_jenkins\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\stream_executor\cuda\cuda_dnn.cc:352] could not destroy cudnn handle: CUDNN_STATUS_BAD_PARAM
2018-03-23 03:03:10.333797: W C:\tf_jenkins\workspace\rel-win\M\windows-gpu\PY\36\tensorflow/stream_executor/stream.h:1983] attempting to perform DNN operation using StreamExecutor without DNN support
2018-03-23 03:03:10.333807: I C:\tf_jenkins\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\stream_executor\stream.cc:1851] stream 00000216F05CB660 did not wait for stream: 00000216F05CA6E0
2018-03-23 03:03:10.340765: I C:\tf_jenkins\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\stream_executor\stream.cc:4637] stream 00000216F05CB660 did not memcpy host-to-device; source: 000000020DB37B00
2018-03-23 03:03:10.343752: F C:\tf_jenkins\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\common_runtime\gpu\gpu_util.cc:343] CPU->GPU Memcpy failed

To solve such issues in Windows, open a Task Manager windows, look for Tasks with name NVIDIA Container and kill them by selecting them and clicking the End Task button at the bottom left corner of the window.

If the issue persists, then you’re probably running out of memory. Try closing down anything else that might be eating up your GPU memory (e.g. Youtube videos, webpages etc.)

“WARNING:tensorflow:Entity <bound method X of <Y>> could not be transformed …”

In some versions of Tensorflow, you may see errors that look similar to the ones below:

...
WARNING:tensorflow:Entity <bound method Conv.call of <tensorflow.python.layers.convolutional.Conv2D object at 0x000001E92103EDD8>> could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting <bound method Conv.call of <tensorflow.python.layers.convolutional.Conv2D object at 0x000001E92103EDD8>>: AssertionError: Bad argument number for Name: 3, expecting 4
WARNING:tensorflow:Entity <bound method BatchNormalization.call of <tensorflow.python.layers.normalization.BatchNormalization object at 0x000001E9225EBA90>> could not be transformed and will be executed as-is. Please report this to the AutgoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: converting <bound method BatchNormalization.call of <tensorflow.python.layers.normalization.BatchNormalization object at 0x000001E9225EBA90>>: AssertionError: Bad argument number for Name: 3, expecting 4
...

These warnings appear to be harmless form my experience, however they can saturate the console with unnecessary messages, which makes it hard to scroll through the output of the training/evaluation process.

As reported here [https://github.com/tensorflow/tensorflow/issues/34551], this issue seems to
be caused by a mismatched version of gast [https://github.com/serge-sans-paille/gast/]. Simply
downgrading gast to version 0.2.2 seems to remove the warnings. This can be done by running:

pip install gast==0.2.2

“AttributeError: module ‘google.protobuf.descriptor’ has no attribute ‘_internal_create_key”

It is possible that when executing from object_detection.utils import label_map_util you may
get the above error. As per the discussion is in this Stack Overflow thread [https://stackoverflow.com/a/61961016/3474873],
upgrading the Python protobuf version seems to solve this issue:

pip install --upgrade protobuf

“TypeError: Expected Operation, Variable, or Tensor, got level_5”

When trying to export oyu trained model using the exporter_main_v2.py script, you may come
across an error that looks like this:

 1Traceback (most recent call last):
 2 File ".\exporter_main_v2.py", line 126, in <module>
 3 app.run(main)
 4 File "C:\Users\sglvladi\Anaconda3\envs\tf2\lib\site-packages\absl\app.py", line 299, in run
 5 _run_main(main, args)
 6 ...
 7 File "C:\Users\sglvladi\Anaconda3\envs\tf2\lib\site-packages\tensorflow\python\keras\engine\base_layer.py", line 1627, in get_losses_for
 8 reachable = tf_utils.get_reachable_from_inputs(inputs, losses)
 9 File "C:\Users\sglvladi\Anaconda3\envs\tf2\lib\site-packages\tensorflow\python\keras\utils\tf_utils.py", line 140, in get_reachable_from_inputs
10 raise TypeError('Expected Operation, Variable, or Tensor, got ' + str(x))
11TypeError: Expected Operation, Variable, or Tensor, got level_5

This error seems to come from TensorFlow itself and a discussion on the issue can be found
here [https://github.com/tensorflow/models/issues/8841]. As discussed there, a fix to the above
issue can be achieved by opening the tf_utils.py file and adding a line of code. Below is a
summary of how this can be done:

	Look at the line that corresponds to line 9 (highlighted) in the above error print out.

	Copy the path to the tf_utils.py file; in my case this was C:\Users\sglvladi\Anaconda3\envs\tf2\lib\site-packages\tensorflow\python\keras\utils\tf_utils.py

	Open the file and replace line 140 of the file as follows:

	Change:

raise TypeError('Expected Operation, Variable, or Tensor, got ' + str(x))

to:

if not isinstance(x, str):
 raise TypeError('Expected Operation, Variable, or Tensor, got ' + str(x))

At the time of writting this tutorial, a fix to the issue had not been implemented in the version
of TensorFlow installed using pip. It is possible that this will get incorporated at some later
point.

Index

Computation times

02:29.261 total execution time for auto_examples files:

	Object Detection Test (plot_object_detection_simple.py)

	02:29.261

	0.0 MB

	Detect Objects Using Your Webcam (object_detection_camera.py)

	00:00.000

	0.0 MB

 _static/file.png

_static/broken_example.png

_static/minus.png

_static/no_image.png

_images/sphx_glr_plot_object_detection_simple_002.png
100

200

300

400

500

600

700

800

e 4850

200

400

600

800

1000 1200

_images/sphx_glr_plot_object_detection_simple_thumb.png

_images/sphx_glr_object_detection_camera_thumb.png

_images/sphx_glr_plot_object_detection_simple_001.png

_static/object_detection_tutorial_err.png
In [11]: # This is needed to display the images.
matplotlib inline
for image_path in TEST_IMAGE_PATHS.
Tnage.open(image_path)

the array based representation of the image will be used Later in order to prepare the
result image with boxes and Labels on it.
image_np - load_image_into_numpy_array(inage)

Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded - np.expand_dims(inage_np, axis-e)

Actual_detection.

output_dict = run_inference_for_single_image(inage_np, detection_graph)

Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(

image_np,

output_dict[i

output_dict[b

output_dict[T

category_index,

instance_nasks-output_dict.get(%o

use_normalized_coordinates=True,
line_thickness-8)
.figure(figsize-TMAGE_SIZE)

plt. inshou(image_np)

0

nav.xhtml

 Table of Contents

 		
 TensorFlow 2 Object Detection API tutorial

 		
 Installation

 		
 General Remarks

 		
 Anaconda Python 3.7 (Optional)

 		
 Install Anaconda Python 3.7

 		
 Create a new Anaconda virtual environment

 		
 Activate the Anaconda virtual environment

 		
 TensorFlow Installation

 		
 Install the TensorFlow PIP package

 		
 Verify your Installation

 		
 GPU Support (Optional)

 		
 TensorFlow Object Detection API Installation

 		
 Downloading the TensorFlow Model Garden

 		
 Protobuf Installation/Compilation

 		
 COCO API installation

 		
 Install the Object Detection API

 		
 Test your Installation

 		
 Try out the examples

 		
 LabelImg Installation

 		
 Get from PyPI (Recommended)

 		
 Use precompiled binaries (Easy)

 		
 Build from source (Hard)

 		
 Training Custom Object Detector

 		
 Preparing the Workspace

 		
 Preparing the Dataset

 		
 Annotate Images

 		
 Partition the Dataset

 		
 Create Label Map

 		
 Create TensorFlow Records

 		
 Configuring a Training Job

 		
 Download Pre-Trained Model

 		
 Configure the Training Pipeline

 		
 Training the Model

 		
 Evaluating the Model (Optional)

 		
 Monitor Training Job Progress using TensorBoard

 		
 Exporting a Trained Inference Graph

 		
 Examples

 		
 Common issues

 		
 Python crashes - TensorFlow GPU

 		
 Cleaning up Nvidia containers (TensorFlow GPU)

 		
 “WARNING:tensorflow:Entity <bound method X of <Y>> could not be transformed …”

 		
 “AttributeError: module ‘google.protobuf.descriptor’ has no attribute ‘_internal_create_key”

 		
 “TypeError: Expected Operation, Variable, or Tensor, got level_5”

_static/object_detection_tutorial_output.png
: Jupyter object_detection_tutorial Last Checkpoint: 6 hours ago (autosaved)

File Edit View Inset Cell Kemel Widgets Help

+3 @ B A ¥ HRn B C|» | coke v [e=
category_index,
instance_masks-output_dict.get("detection_masks'),
use_normalized_coordinates=True,
line_thickness-8)
plt. figure(figsize-THAGE_STZE)
plt. inshou(image_np)

0

100

20

00

00

500

&0

0 20 00 &0

100

20

[

Logout

|Python3 O

_static/plus.png

