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Important: This tutorial is intended for TensorFlow 1.14, which (at the time of writing this tutorial) is the latest
stable version before TensorFlow 2.x.

Tensorflow 1.15 has also been released, but seems to be exhibiting instability issues.

A version for Tensorflow 1.9 can be found here.

A version for Tensorflow 2.x is in the making and a link will be added here when ready.

This is a step-by-step tutorial/guide to setting up and using TensorFlow’s Object Detection API to perform, namely,
object detection in images/video.

The software tools which we shall use throughout this tutorial are listed in the table below:

Target Software versions
OS Windows, Linux
Python 3.7
TensorFlow 1.14
CUDA Toolkit 10.0
CuDNN 7.6.5
Anaconda Python 3.7 (Optional)

CONTENTS: 1

https://github.com/tensorflow/models/issues/7640
https://tensorflow-object-detection-api-tutorial.readthedocs.io/en/v1.9.1/


TensorFlow setup Documentation

2 CONTENTS:



CHAPTER

ONE

INSTALLATION

1.1 General Remarks

• There are two different variations of TensorFlow that you might wish to install, depending on whether you would
like TensorFlow to run on your CPU or GPU, namely TensorFlow CPU and TensorFlow GPU. I will proceed
to document both and you can choose which one you wish to install.

• If you wish to install both TensorFlow variants on your machine, ideally you should install each variant under a
different (virtual) environment. If you attempt to install both TensorFlow CPU and TensorFlow GPU, without
making use of virtual environments, you will either end up failing, or when we later start running code there
will always be an uncertainty as to which variant is being used to execute your code.

• To ensure that we have no package conflicts and/or that we can install several different versions/variants of
TensorFlow (e.g. CPU and GPU), it is generally recommended to use a virtual environment of some sort. For
the purposes of this tutorial we will be creating and managing our virtual environments using Anaconda, but
you are welcome to use the virtual environment manager of your choice (e.g. virtualenv).

1.2 Install Anaconda Python 3.7 (Optional)

Although having Anaconda is not a requirement in order to install and use TensorFlow, I suggest doing so, due to it’s
intuitive way of managing packages and setting up new virtual environments. Anaconda is a pretty useful tool, not
only for working with TensorFlow, but in general for anyone working in Python, so if you haven’t had a chance to
work with it, now is a good chance.

Windows

• Go to https://www.anaconda.com/download/

• Download Anaconda Python 3.7 version for Windows

• Run the downloaded executable (.exe) file to begin the installation. See here for more details.

• (Optional) In the next step, check the box “Add Anaconda to my PATH environment variable”. This will
make Anaconda your default Python distribution, which should ensure that you have the same default Python
distribution across all editors.

Linux

• Go to https://www.anaconda.com/download/

• Download Anaconda Python 3.7 version for Linux

• Run the downloaded bash script (.sh) file to begin the installation. See here for more details.

3
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• When prompted with the question “Do you wish the installer to prepend the Anaconda<2 or 3> install location
to PATH in your /home/<user>/.bashrc ?”, answer “Yes”. If you enter “No”, you must manually add the path to
Anaconda or conda will not work.

1.3 TensorFlow Installation

As mentioned in the Remarks section, there exist two generic variants of TensorFlow, which utilise different hardware
on your computer to run their computationally heavy Machine Learning algorithms.

1. The simplest to install, but also in most cases the slowest in terms of performance, is TensorFlow CPU, which
runs directly on the CPU of your machine.

2. Alternatively, if you own a (compatible) Nvidia graphics card, you can take advantage of the available CUDA
cores to speed up the computations performed by TensorFlow, in which case you should follow the guidelines
for installing TensorFlow GPU.

1.3.1 TensorFlow CPU

Getting setup with an installation of TensorFlow CPU can be done in 3 simple steps.

Important: The term Terminal will be used to refer to the Terminal of your choice (e.g. Command Prompt, Power-
shell, etc.)

1.3.1.1 Create a new Conda virtual environment (Optional)

• Open a new Terminal window

• Type the following command:

conda create -n tensorflow_cpu pip python=3.7

• The above will create a new virtual environment with name tensorflow_cpu

• Now lets activate the newly created virtual environment by running the following in the Terminal window:

activate tensorflow_cpu

Once you have activated your virtual environment, the name of the environment should be displayed within brackets
at the beggining of your cmd path specifier, e.g.:

(tensorflow_cpu) C:\Users\sglvladi>
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1.3.1.2 Install TensorFlow CPU for Python

• Open a new Terminal window and activate the tensorflow_cpu environment (if you have not done so already)

• Once open, type the following on the command line:

pip install --ignore-installed --upgrade tensorflow==1.14

• Wait for the installation to finish

1.3.1.3 Test your Installation

• Open a new Terminal window and activate the tensorflow_cpu environment (if you have not done so already)

• Start a new Python interpreter session by running:

python

• Once the interpreter opens up, type:

>>> import tensorflow as tf

• If the above code shows an error, then check to make sure you have activated the tensorflow_cpu environment
and that tensorflow_cpu was successfully installed within it in the previous step.

• Then run the following:

>>> hello = tf.constant('Hello, TensorFlow!')
>>> sess = tf.Session()

• Once the above is run, if you see a print-out similar (or identical) to the one below, it means that you could
benefit from installing TensorFlow by building the sources that correspond to you specific CPU. Everything
should still run as normal, but potentially slower than if you had built TensorFlow from source.

2019-02-28 11:59:25.810663: I T:\src\github\tensorflow\tensorflow\core\
→˓platform\cpu_feature_guard.cc:141] Your CPU supports instructions that
→˓this TensorFlow binary was not compiled to use: AVX2

• Finally, run the following:

>>> print(sess.run(hello))
b'Hello, TensorFlow!'

1.3.2 TensorFlow GPU

The installation of TensorFlow GPU is slightly more involved than that of TensorFlow CPU, mainly due to the need
of installing the relevant Graphics and CUDE drivers. There’s a nice Youtube tutorial (see here), explaining how to
install TensorFlow GPU. Although it describes different versions of the relevant components (including TensorFlow
itself), the installation steps are generally the same with this tutorial.

Before proceeding to install TensorFlow GPU, you need to make sure that your system can satisfy the following
requirements:

1.3. TensorFlow Installation 5
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Prerequisites
Nvidia GPU (GTX 650 or newer)
CUDA Toolkit v10.0
CuDNN 7.6.5
Anaconda with Python 3.7 (Optional)

1.3.2.1 Install CUDA Toolkit

Windows

Follow this link to download and install CUDA Toolkit 10.0.

Linux

Follow this link to download and install CUDA Toolkit 10.0 for your Linux distribution.

1.3.2.2 Install CUDNN

Windows

• Go to https://developer.nvidia.com/rdp/cudnn-download

• Create a user profile if needed and log in

• Select cuDNN v7.6.5 (Nov 5, 2019), for CUDA 10.0

• Download cuDNN v7.6.5 Library for Windows 10

• Extract the contents of the zip file (i.e. the folder named cuda) inside <INSTALL_PATH>\NVIDIA
GPU Computing Toolkit\CUDA\v10.0\, where <INSTALL_PATH> points to the installation direc-
tory specified during the installation of the CUDA Toolkit. By default <INSTALL_PATH> = C:\Program
Files.

Linux

• Go to https://developer.nvidia.com/rdp/cudnn-download

• Create a user profile if needed and log in

• Select cuDNN v7.6.5 (Nov 5, 2019), for CUDA 10.0

• Download cuDNN v7.6.5 Library for Linux

• Follow the instructions under Section 2.3.1 of the CuDNN Installation Guide to install CuDNN.

1.3.2.3 Environment Setup

Windows

• Go to Start and Search “environment variables”

• Click “Edit the system environment variables”. This should open the “System Properties” window

• In the opened window, click the “Environment Variables. . . ” button to open the “Environment Variables” win-
dow.

• Under “System variables”, search for and click on the Path system variable, then click “Edit. . . ”

• Add the following paths, then click “OK” to save the changes:

– <INSTALL_PATH>\NVIDIA GPU Computing Toolkit\CUDA\v10.0\bin
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– <INSTALL_PATH>\NVIDIA GPU Computing Toolkit\CUDA\v10.0\libnvvp

– <INSTALL_PATH>\NVIDIA GPU Computing Toolkit\CUDA\v10.0\extras\CUPTI\
libx64

– <INSTALL_PATH>\NVIDIA GPU Computing Toolkit\CUDA\v10.0\cuda\bin

Linux

As per Section 7.1.1 of the CUDA Installation Guide for Linux, append the following lines to ~/.bashrc:

# CUDA related exports
export PATH=/usr/local/cuda-10.0/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-10.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_
→˓PATH}}

1.3.2.4 Update your GPU drivers (Optional)

If during the installation of the CUDA Toolkit (see Install CUDA Toolkit) you selected the Express Installation option,
then your GPU drivers will have been overwritten by those that come bundled with the CUDA toolkit. These drivers
are typically NOT the latest drivers and, thus, you may wish to updte your drivers.

• Go to http://www.nvidia.com/Download/index.aspx

• Select your GPU version to download

• Install the driver for your chosen OS

1.3.2.5 Create a new Conda virtual environment

• Open a new Terminal window

• Type the following command:

conda create -n tensorflow_gpu pip python=3.7

• The above will create a new virtual environment with name tensorflow_gpu

• Now lets activate the newly created virtual environment by running the following in the Anaconda Promt win-
dow:

activate tensorflow_gpu

Once you have activated your virtual environment, the name of the environment should be displayed within brackets
at the beggining of your cmd path specifier, e.g.:

(tensorflow_gpu) C:\Users\sglvladi>

1.3. TensorFlow Installation 7
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1.3.2.6 Install TensorFlow GPU for Python

• Open a new Terminal window and activate the tensorflow_gpu environment (if you have not done so already)

• Once open, type the following on the command line:

pip install --upgrade tensorflow-gpu==1.14

• Wait for the installation to finish

1.3.2.7 Test your Installation

• Open a new Terminal window and activate the tensorflow_gpu environment (if you have not done so already)

• Start a new Python interpreter session by running:

python

• Once the interpreter opens up, type:

>>> import tensorflow as tf

• If the above code shows an error, then check to make sure you have activated the tensorflow_gpu environment
and that tensorflow_gpu was successfully installed within it in the previous step.

• Then run the following:

>>> hello = tf.constant('Hello, TensorFlow!')
>>> sess = tf.Session()

• Once the above is run, you should see a print-out similar (but not identical) to the one bellow:

2019-11-25 07:20:32.415386: I tensorflow/stream_executor/platform/default/
→˓dso_loader.cc:44] Successfully opened dynamic library nvcuda.dll
2019-11-25 07:20:32.449116: I tensorflow/core/common_runtime/gpu/gpu_
→˓device.cc:1618] Found device 0 with properties:
name: GeForce GTX 1070 Ti major: 6 minor: 1 memoryClockRate(GHz): 1.683
pciBusID: 0000:01:00.0
2019-11-25 07:20:32.455223: I tensorflow/stream_executor/platform/default/
→˓dlopen_checker_stub.cc:25] GPU libraries are statically linked, skip
→˓dlopen check.
2019-11-25 07:20:32.460799: I tensorflow/core/common_runtime/gpu/gpu_
→˓device.cc:1746] Adding visible gpu devices: 0
2019-11-25 07:20:32.464391: I tensorflow/core/platform/cpu_feature_guard.
→˓cc:142] Your CPU supports instructions that this TensorFlow binary was
→˓not compiled to use: AVX2
2019-11-25 07:20:32.472682: I tensorflow/core/common_runtime/gpu/gpu_
→˓device.cc:1618] Found device 0 with properties:
name: GeForce GTX 1070 Ti major: 6 minor: 1 memoryClockRate(GHz): 1.683
pciBusID: 0000:01:00.0
2019-11-25 07:20:32.478942: I tensorflow/stream_executor/platform/default/
→˓dlopen_checker_stub.cc:25] GPU libraries are statically linked, skip
→˓dlopen check.
2019-11-25 07:20:32.483948: I tensorflow/core/common_runtime/gpu/gpu_
→˓device.cc:1746] Adding visible gpu devices: 0
2019-11-25 07:20:33.181565: I tensorflow/core/common_runtime/gpu/gpu_
→˓device.cc:1159] Device interconnect StreamExecutor with strength 1 edge
→˓matrix:

(continues on next page)
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(continued from previous page)

2019-11-25 07:20:33.185974: I tensorflow/core/common_runtime/gpu/gpu_
→˓device.cc:1165] 0
2019-11-25 07:20:33.189041: I tensorflow/core/common_runtime/gpu/gpu_
→˓device.cc:1178] 0: N
2019-11-25 07:20:33.193290: I tensorflow/core/common_runtime/gpu/gpu_
→˓device.cc:1304] Created TensorFlow device (/job:localhost/replica:0/
→˓task:0/device:GPU:0 with 6358 MB memory) -> physical GPU (device: 0,
→˓name: GeForce GTX 1070 Ti, pci bus id: 0000:01:00.0, compute
→˓capability: 6.1)

• Finally, run the following:

>>> print(sess.run(hello))
b'Hello, TensorFlow!'

1.4 TensorFlow Models Installation

Now that you have installed TensorFlow, it is time to install the models used by TensorFlow to do its magic.

1.4.1 Install Prerequisites

Building on the assumption that you have just created your new virtual environment (whether that’s tensorflow_cpu,
tensorflow_gpu or whatever other name you might have used), there are some packages which need to be installed
before installing the models.

Prerequisite packages
Name Tutorial version-build
pillow 6.2.1-py37hdc69c19_0
lxml 4.4.1-py37h1350720_0
jupyter 1.0.0-py37_7
matplotlib 3.1.1-py37hc8f65d3_0
opencv 3.4.2-py37hc319ecb_0
pathlib 1.0.1-cp37

The packages can be installed using conda by running:

conda install <package_name>(=<version>) <package_name>(=<version>) ... <package_name>
→˓(=<version>)

where <package_name> can be replaced with the name of the package, and optionally the package version can be
specified by adding the optional specifier =<version> after <package_name>. For example, to simply install all
packages at their latest versions you can run:

conda install pillow lxml jupyter matplotlib opencv cython

Alternatively, if you don’t want to use Anaconda you can install the packages using pip:

pip install <package_name>(==<version>) <package_name>(==<version>) ... <package_name>
→˓(==<version>)

but you will need to install opencv-python instead of opencv.

1.4. TensorFlow Models Installation 9
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1.4.2 Downloading the TensorFlow Models

Note: To ensure compatibility with the chosen version of Tensorflow (i.e. 1.14.0), it is generally recommended to
use one of the Tensorflow Models releases, as they are most likely to be stable. Release v1.13.0 is the last unofficial
release before v2.0 and therefore is the one used here.

• Create a new folder under a path of your choice and name it TensorFlow. (e.g. C:\Users\sglvladi\
Documents\TensorFlow).

• From your Terminal cd into the TensorFlow directory.

• To download the models you can either use Git to clone the TensorFlow Models v.1.13.0 release inside the
TensorFlow folder, or you can simply download it as a ZIP and extract it’s contents inside the TensorFlow
folder. To keep things consistent, in the latter case you will have to rename the extracted folder models-r1.
13.0 to models.

• You should now have a single folder named models under your TensorFlow folder, which contains another
4 folders as such:

TensorFlow
models

official
research
samples
tutorials

1.4.3 Protobuf Installation/Compilation

The Tensorflow Object Detection API uses Protobufs to configure model and training parameters. Before the frame-
work can be used, the Protobuf libraries must be downloaded and compiled.

This should be done as follows:

• Head to the protoc releases page

• Download the latest protoc-*-*.zip release (e.g. protoc-3.11.0-win64.zip for 64-bit Windows)

• Extract the contents of the downloaded protoc-*-*.zip in a directory <PATH_TO_PB> of your choice
(e.g. C:\Program Files\Google Protobuf)

• Extract the contents of the downloaded protoc-*-*.zip, inside C:\Program Files\Google
Protobuf

• Add <PATH_TO_PB> to your Path environment variable (see Environment Setup)

• In a new Terminal1, cd into TensorFlow/models/research/ directory and run the following command:

# From within TensorFlow/models/research/
protoc object_detection/protos/*.proto --python_out=.

Important: If you are on Windows and using Protobuf 3.5 or later, the multi-file selection wildcard (i.e *.proto)
may not work but you can do one of the following:

Windows Powershell
1 NOTE: You MUST open a new Terminal for the changes in the environment variables to take effect.
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# From within TensorFlow/models/research/
Get-ChildItem object_detection/protos/*.proto | foreach {protoc "object_detection/
→˓protos/$($_.Name)" --python_out=.}

Command Prompt

# From within TensorFlow/models/research/
for /f %i in ('dir /b object_detection\protos\*.proto') do protoc object_detection\
→˓protos\%i --python_out=.

1.4.4 Adding necessary Environment Variables

1. Install the Tensorflow\models\research\object_detection package by running the following
from Tensorflow\models\research:

# From within TensorFlow/models/research/
pip install .

2. Add research/slim to your PYTHONPATH:

Windows

• Go to Start and Search “environment variables”

• Click “Edit the system environment variables”. This should open the “System Properties” window

• In the opened window, click the “Environment Variables. . . ” button to open the “Environment Variables” win-
dow.

• Under “System variables”, search for and click on the PYTHONPATH system variable,

– If it exists then click “Edit. . . ” and add <PATH_TO_TF>\TensorFlow\models\research\slim
to the list

– If it doesn’t already exist, then click “New. . . ”, under “Variable name” type PYTHONPATH and under
“Variable value” enter <PATH_TO_TF>\TensorFlow\models\research\slim

• Then click “OK” to save the changes:

Linux

The Installation docs suggest that you either run, or add to ~/.bashrc file, the following command, which adds
these packages to your PYTHONPATH:

# From within tensorflow/models/research/
export PYTHONPATH=$PYTHONPATH:<PATH_TO_TF>/TensorFlow/models/research/slim

where, in both cases, <PATH_TO_TF> replaces the absolute path to your TensorFlow folder. (e.g.
<PATH_TO_TF> = C:\Users\sglvladi\Documents if TensorFlow resides within your Documents
folder)

1.4. TensorFlow Models Installation 11
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1.4.5 COCO API installation (Optional)

The pycocotools package should be installed if you are interested in using COCO evaluation metrics, as discussed
in Evaluating the Model (Optional).

Windows

Run the following command to install pycocotools with Windows support:

pip install git+https://github.com/philferriere/cocoapi.git#subdirectory=PythonAPI

Note that, according to the package’s instructions, Visual C++ 2015 build tools must be installed and on your path. If
they are not, make sure to install them from here.

Linux

Download cocoapi to a directory of your choice, then make and copy the pycocotools subfolder to the Tensorflow/
models/research directory, as such:

git clone https://github.com/cocodataset/cocoapi.git
cd cocoapi/PythonAPI
make
cp -r pycocotools <PATH_TO_TF>/TensorFlow/models/research/

Note: The default metrics are based on those used in Pascal VOC evaluation.

• To use the COCO object detection metrics add metrics_set: "coco_detection_metrics" to the
eval_config message in the config file.

• To use the COCO instance segmentation metrics add metrics_set: "coco_mask_metrics" to the
eval_config message in the config file.

1.4.6 Test your Installation

• Open a new Terminal window and activate the tensorflow_gpu environment (if you have not done so already)

• cd into TensorFlow\models\research\object_detection and run the following command:

# From within TensorFlow/models/research/object_detection
jupyter notebook

• This should start a new jupyter notebook server on your machine and you should be redirected to a new
tab of your default browser.

• Once there, simply follow sentdex’s Youtube video to ensure that everything is running smoothly.

• When done, your notebook should look similar to the image bellow:
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Important:

1. If no errors appear, but also no images are shown in the notebook, try adding %matplotlib inline at the
start of the last cell, as shown by the highlighted text in the image bellow:
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2. If Python crashes when running the last cell, have a look at the Terminal window you used to run jupyter
notebook and check for an error similar (maybe identical) to the one below:

2018-03-22 03:07:54.623130: E C:\tf_jenkins\workspace\rel-win\M\windows-
→˓gpu\PY\36\tensorflow\stream_executor\cuda\cuda_dnn.cc:378] Loaded
→˓runtime CuDNN library: 7101 (compatibility version 7100) but source was
→˓compiled with 7003 (compatibility version 7000). If using a binary
→˓install, upgrade your CuDNN library to match. If building from sources,
→˓ make sure the library loaded at runtime matches a compatible version
→˓specified during compile configuration.

• If the above line is present in the printed debugging, it means that you have not installed the
correct version of the cuDNN libraries. In this case make sure you re-do the Install CUDNN
step, making sure you instal cuDNN v7.6.5.
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1.5 LabelImg Installation

There exist several ways to install labelImg. Below are 3 of the most common.

1.5.1 Get from PyPI (Recommended)

1. Open a new Terminal window and activate the tensorflow_gpu environment (if you have not done so already)

2. Run the following command to install labelImg:

pip install labelImg

3. labelImg can then be run as follows:

labelImg
# or
labelImg [IMAGE_PATH] [PRE-DEFINED CLASS FILE]

1.5.2 Use precompiled binaries (Easy)

Precompiled binaries for both Windows and Linux can be found here .

Installation is the done in three simple steps:

1. Inside you TensorFlow folder, create a new directory, name it addons and then cd into it.

2. Download the latest binary for your OS from here. and extract its contents under Tensorflow/addons/
labelImg.

3. You should now have a single folder named addons\labelImg under your TensorFlow folder, which
contains another 4 folders as such:

TensorFlow
addons

labelImg
models

official
research
samples
tutorials

4. labelImg can then be run as follows:

# From within Tensorflow/addons/labelImg
labelImg
# or
labelImg [IMAGE_PATH] [PRE-DEFINED CLASS FILE]
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1.5.3 Build from source (Hard)

The steps for installing from source follow below.

1. Download labelImg

• Inside you TensorFlow folder, create a new directory, name it addons and then cd into it.

• To download the package you can either use Git to clone the labelImg repo inside the TensorFlow\
addons folder, or you can simply download it as a ZIP and extract it’s contents inside the TensorFlow\
addons folder. To keep things consistent, in the latter case you will have to rename the extracted folder
labelImg-master to labelImg.2

• You should now have a single folder named addons\labelImg under your TensorFlow folder, which
contains another 4 folders as such:

TensorFlow
addons

labelImg
models

official
research
samples
tutorials

2. Install dependencies and compiling package

• Open a new Terminal window and activate the tensorflow_gpu environment (if you have not done so already)

• cd into TensorFlow\addons\labelImg and run the following commands:

Windows

conda install pyqt=5
pyrcc5 -o libs/resources.py resources.qrc

Linux

sudo apt-get install pyqt5-dev-tools
sudo pip install -r requirements/requirements-linux-python3.txt
make qt5py3

3. Test your installation

• Open a new Terminal window and activate the tensorflow_gpu environment (if you have not done so already)

• cd into TensorFlow\addons\labelImg and run the following command:

# From within Tensorflow/addons/labelImg
python labelImg.py
# or
python labelImg.py [IMAGE_PATH] [PRE-DEFINED CLASS FILE]

2 The latest repo commit when writing this tutorial is 8d1bd68.
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CHAPTER

TWO

DETECT OBJECTS USING YOUR WEBCAM

Hereby you can find an example which allows you to use your camera to generate a video stream, based on which you
can perform object_detection.

To run the example, simply create a new file under <PATH_TO_TF>/TensorFlow/models/research/
object_detection and paste the code below.

import numpy as np
import os
import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfile
import cv2

from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util

# Define the video stream
cap = cv2.VideoCapture(0) # Change only if you have more than one webcams

# What model to download.
# Models can bee found here: https://github.com/tensorflow/models/blob/master/
→˓research/object_detection/g3doc/detection_model_zoo.md
MODEL_NAME = 'ssd_inception_v2_coco_2017_11_17'
MODEL_FILE = MODEL_NAME + '.tar.gz'
DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/'

# Path to frozen detection graph. This is the actual model that is used for the
→˓object detection.
PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'

# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt')

# Number of classes to detect
NUM_CLASSES = 90

# Download Model
if not os.path.exists(os.path.join(os.getcwd(), MODEL_FILE)):

(continues on next page)

17



TensorFlow setup Documentation

(continued from previous page)

print("Downloading model")
opener = urllib.request.URLopener()
opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_FILE)
tar_file = tarfile.open(MODEL_FILE)
for file in tar_file.getmembers():

file_name = os.path.basename(file.name)
if 'frozen_inference_graph.pb' in file_name:

tar_file.extract(file, os.getcwd())

# Load a (frozen) Tensorflow model into memory.
detection_graph = tf.Graph()
with detection_graph.as_default():

od_graph_def = tf.compat.v1.GraphDef()
with tf.io.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:

serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')

# Loading label map
# Label maps map indices to category names, so that when our convolution network
→˓predicts `5`, we know that this corresponds to `airplane`. Here we use internal
→˓utility functions, but anything that returns a dictionary mapping integers to
→˓appropriate string labels would be fine
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(

label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)

# Helper code
def load_image_into_numpy_array(image):

(im_width, im_height) = image.size
return np.array(image.getdata()).reshape(

(im_height, im_width, 3)).astype(np.uint8)

# Detection
with detection_graph.as_default():

with tf.compat.v1.Session(graph=detection_graph) as sess:
while True:

# Read frame from camera
ret, image_np = cap.read()
# Expand dimensions since the model expects images to have shape: [1,

→˓None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
# Extract image tensor
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Extract detection boxes
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Extract detection scores
scores = detection_graph.get_tensor_by_name('detection_scores:0')
# Extract detection classes
classes = detection_graph.get_tensor_by_name('detection_classes:0')
# Extract number of detectionsd
num_detections = detection_graph.get_tensor_by_name(

(continues on next page)
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(continued from previous page)

'num_detections:0')
# Actual detection.
(boxes, scores, classes, num_detections) = sess.run(

[boxes, scores, classes, num_detections],
feed_dict={image_tensor: image_np_expanded})

# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(

image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=8)

# Display output
cv2.imshow('object detection', cv2.resize(image_np, (800, 600)))

if cv2.waitKey(25) & 0xFF == ord('q'):
cv2.destroyAllWindows()
break
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CHAPTER

THREE

TRAINING CUSTOM OBJECT DETECTOR

So, up to now you should have done the following:

• Installed TensorFlow, either CPU or GPU (See TensorFlow Installation)

• Installed TensorFlow Models (See TensorFlow Models Installation)

• Installed labelImg (See LabelImg Installation)

Now that we have done all the above, we can start doing some cool stuff. Here we will see how you can train your
own object detector, and since it is not as simple as it sounds, we will have a look at:

1. How to organise your workspace/training files

2. How to prepare/annotate image datasets

3. How to generate tf records from such datasets

4. How to configure a simple training pipeline

5. How to train a model and monitor it’s progress

6. How to export the resulting model and use it to detect objects.

3.1 Preparing workspace

1. If you have followed the tutorial, you should by now have a folder Tensorflow, placed under
<PATH_TO_TF> (e.g. C:\Users\sglvladi\Documents), with the following directory tree:

TensorFlow
addons

labelImg
models

official
research
samples
tutorials

2. Now create a new folder under TensorFlow and call it workspace. It is within the workspace that
we will store all our training set-ups. Now let’s go under workspace and create another folder named
training_demo. Now our directory structure should be as so:

TensorFlow
addons

labelImg
models

(continues on next page)
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official
research
samples
tutorials

workspace
training_demo

3. The training_demo folder shall be our training folder, which will contain all files related to our model
training. It is advisable to create a separate training folder each time we wish to train a different model. The
typical structure for training folders is shown below.

training_demo
annotations
images

test
train

pre-trained-model
training
README.md

Here’s an explanation for each of the folders/filer shown in the above tree:

• annotations: This folder will be used to store all *.csv files and the respective TensorFlow *.record
files, which contain the list of annotations for our dataset images.

• images: This folder contains a copy of all the images in our dataset, as well as the respective *.xml files
produced for each one, once labelImg is used to annotate objects.

– images\train: This folder contains a copy of all images, and the respective *.xml files, which will
be used to train our model.

– images\test: This folder contains a copy of all images, and the respective *.xml files, which will be
used to test our model.

• pre-trained-model: This folder will contain the pre-trained model of our choice, which shall be used as
a starting checkpoint for our training job.

• training: This folder will contain the training pipeline configuration file *.config, as well as a *.pbtxt
label map file and all files generated during the training of our model.

• README.md: This is an optional file which provides some general information regarding the training conditions
of our model. It is not used by TensorFlow in any way, but it generally helps when you have a few training folders
and/or you are revisiting a trained model after some time.

If you do not understand most of the things mentioned above, no need to worry, as we’ll see how all the files are
generated further down.

3.2 Annotating images

To annotate images we will be using the labelImg package. If you haven’t installed the package yet, then have a look
at LabelImg Installation.

• Once you have collected all the images to be used to test your model (ideally more than 100 per class), place
them inside the folder training_demo\images.

• Open a new Anaconda/Command Prompt window and cd into Tensorflow\addons\labelImg.
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• If (as suggested in LabelImg Installation) you created a separate Conda environment for labelImg then go
ahead and activate it by running:

activate labelImg

• Next go ahead and start labelImg, pointing it to your training_demo\images folder.

python labelImg.py ..\..\workspace\training_demo\images

• A File Explorer Dialog windows should open, which points to the training_demo\images folder.

• Press the “Select Folder” button, to start annotating your images.

Once open, you should see a window similar to the one below:

I won’t be covering a tutorial on how to use labelImg, but you can have a look at labelImg’s repo for more de-
tails. A nice Youtube video demonstrating how to use labelImg is also available here. What is important is that
once you annotate all your images, a set of new *.xml files, one for each image, should be generated inside your
training_demo\images folder.

3.3 Partitioning the images

Once you have finished annotating your image dataset, it is a general convention to use only part of it for training, and
the rest is used for evaluation purposes (e.g. as discussed in Evaluating the Model (Optional)).

Typically, the ratio is 90%/10%, i.e. 90% of the images are used for training and the rest 10% is maintained for testing,
but you can chose whatever ratio suits your needs.

Once you have decided how you will be splitting your dataset, copy all training images, together with their corre-
sponding *.xml files, and place them inside the training_demo\images\train folder. Similarly, copy all
testing images, with their *.xml files, and paste them inside training_demo\images\test.

For lazy people like myself, who cannot be bothered to do the above, I have put tugether a simple script that automates
the above process:
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""" usage: partition_dataset.py [-h] [-i IMAGEDIR] [-o OUTPUTDIR] [-r RATIO] [-x]

Partition dataset of images into training and testing sets

optional arguments:
-h, --help show this help message and exit
-i IMAGEDIR, --imageDir IMAGEDIR

Path to the folder where the image dataset is stored. If not
→˓specified, the CWD will be used.
-o OUTPUTDIR, --outputDir OUTPUTDIR

Path to the output folder where the train and test dirs
→˓should be created. Defaults to the same directory as IMAGEDIR.
-r RATIO, --ratio RATIO

The ratio of the number of test images over the total number
→˓of images. The default is 0.1.
-x, --xml Set this flag if you want the xml annotation files to be

→˓processed and copied over.
"""
import os
import re
import shutil
from PIL import Image
from shutil import copyfile
import argparse
import glob
import math
import random
import xml.etree.ElementTree as ET

def iterate_dir(source, dest, ratio, copy_xml):
source = source.replace('\\', '/')
dest = dest.replace('\\', '/')
train_dir = os.path.join(dest, 'train')
test_dir = os.path.join(dest, 'test')

if not os.path.exists(train_dir):
os.makedirs(train_dir)

if not os.path.exists(test_dir):
os.makedirs(test_dir)

images = [f for f in os.listdir(source)
if re.search(r'([a-zA-Z0-9\s_\\.\-\(\):])+(.jpg|.jpeg|.png)$', f)]

num_images = len(images)
num_test_images = math.ceil(ratio*num_images)

for i in range(num_test_images):
idx = random.randint(0, len(images)-1)
filename = images[idx]
copyfile(os.path.join(source, filename),

os.path.join(test_dir, filename))
if copy_xml:

xml_filename = os.path.splitext(filename)[0]+'.xml'
copyfile(os.path.join(source, xml_filename),

os.path.join(test_dir,xml_filename))
images.remove(images[idx])

(continues on next page)
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for filename in images:
copyfile(os.path.join(source, filename),

os.path.join(train_dir, filename))
if copy_xml:

xml_filename = os.path.splitext(filename)[0]+'.xml'
copyfile(os.path.join(source, xml_filename),

os.path.join(train_dir, xml_filename))

def main():

# Initiate argument parser
parser = argparse.ArgumentParser(description="Partition dataset of images into

→˓training and testing sets",
formatter_class=argparse.RawTextHelpFormatter)

parser.add_argument(
'-i', '--imageDir',
help='Path to the folder where the image dataset is stored. If not specified,

→˓the CWD will be used.',
type=str,
default=os.getcwd()

)
parser.add_argument(

'-o', '--outputDir',
help='Path to the output folder where the train and test dirs should be

→˓created. '
'Defaults to the same directory as IMAGEDIR.',

type=str,
default=None

)
parser.add_argument(

'-r', '--ratio',
help='The ratio of the number of test images over the total number of images.

→˓The default is 0.1.',
default=0.1,
type=float)

parser.add_argument(
'-x', '--xml',
help='Set this flag if you want the xml annotation files to be processed and

→˓copied over.',
action='store_true'

)
args = parser.parse_args()

if args.outputDir is None:
args.outputDir = args.imageDir

# Now we are ready to start the iteration
iterate_dir(args.imageDir, args.outputDir, args.ratio, args.xml)

if __name__ == '__main__':
main()

To use the script, simply copy and paste the code above in a script named partition_dataset.py. Then,
assuming you have all your images and *.xml files inside training_demo\images, just run the following
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command:

python partition_dataser.py -x -i training_demo\images -r 0.1

Once the script has finished, there should exist two new folders under training_demo\images, namely
training_demo\images\train and training_demo\images\test, containing 90% and 10% of the
images (and *.xml files), respectively. To avoid loss of any files, the script will not delete the images under
training_demo\images. Once you have checked that your images have been safely copied over, you can delete
the images under training_demo\images manually.

3.4 Creating Label Map

TensorFlow requires a label map, which namely maps each of the used labels to an integer values. This label map is
used both by the training and detection processes.

Below I show an example label map (e.g label_map.pbtxt), assuming that our dataset containes 2 labels, dogs
and cats:

item {
id: 1
name: 'cat'

}

item {
id: 2
name: 'dog'

}

Label map files have the extention .pbtxt and should be placed inside the training_demo\annotations
folder.

3.5 Creating TensorFlow Records

Now that we have generated our annotations and split our dataset into the desired training and testing subsets, it is
time to convert our annotations into the so called TFRecord format.

There are two steps in doing so:

• Converting the individual *.xml files to a unified *.csv file for each dataset.

• Converting the *.csv files of each dataset to *.record files (TFRecord format).

Before we proceed to describe the above steps, let’s create a directory where we can store some scripts. Under the
TensorFlow folder, create a new folder TensorFlow\scripts, which we can use to store some useful scripts.
To make things even tidier, let’s create a new folder TensorFlow\scripts\preprocessing, where we shall
store scripts that we can use to preprocess our training inputs. Below is out TensorFlow directory tree structure, up
to now:

TensorFlow
addons

labelImg
models

official
research

(continues on next page)
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samples
tutorials

scripts
preprocessing

workspace
training_demo

3.5.1 Converting *.xml to *.csv

To do this we can write a simple script that iterates through all *.xml files in the training_demo\images\
train and training_demo\images\test folders, and generates a *.csv for each of the two.

Here is an example script that allows us to do just that:

"""
Usage:
# Create train data:
python xml_to_csv.py -i [PATH_TO_IMAGES_FOLDER]/train -o [PATH_TO_ANNOTATIONS_FOLDER]/
→˓train_labels.csv

# Create test data:
python xml_to_csv.py -i [PATH_TO_IMAGES_FOLDER]/test -o [PATH_TO_ANNOTATIONS_FOLDER]/
→˓test_labels.csv
"""

import os
import glob
import pandas as pd
import argparse
import xml.etree.ElementTree as ET

def xml_to_csv(path):
"""Iterates through all .xml files (generated by labelImg) in a given directory

→˓and combines them in a single Pandas datagrame.

Parameters:
----------
path : {str}

The path containing the .xml files
Returns
-------
Pandas DataFrame

The produced dataframe
"""

xml_list = []
for xml_file in glob.glob(path + '/*.xml'):

tree = ET.parse(xml_file)
root = tree.getroot()
for member in root.findall('object'):

value = (root.find('filename').text,
int(root.find('size')[0].text),
int(root.find('size')[1].text),
member[0].text,

(continues on next page)
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int(member[4][0].text),
int(member[4][1].text),
int(member[4][2].text),
int(member[4][3].text)
)

xml_list.append(value)
column_name = ['filename', 'width', 'height',

'class', 'xmin', 'ymin', 'xmax', 'ymax']
xml_df = pd.DataFrame(xml_list, columns=column_name)
return xml_df

def main():
# Initiate argument parser
parser = argparse.ArgumentParser(

description="Sample TensorFlow XML-to-CSV converter")
parser.add_argument("-i",

"--inputDir",
help="Path to the folder where the input .xml files are stored

→˓",
type=str)

parser.add_argument("-o",
"--outputFile",
help="Name of output .csv file (including path)", type=str)

args = parser.parse_args()

if(args.inputDir is None):
args.inputDir = os.getcwd()

if(args.outputFile is None):
args.outputFile = args.inputDir + "/labels.csv"

assert(os.path.isdir(args.inputDir))

xml_df = xml_to_csv(args.inputDir)
xml_df.to_csv(

args.outputFile, index=None)
print('Successfully converted xml to csv.')

if __name__ == '__main__':
main()

• Create a new file with name xml_to_csv.py under TensorFlow\scripts\preprocessing, open it,
paste the above code inside it and save.

• Install the pandas package:

conda install pandas # Anaconda
# or

pip install pandas # pip

• Finally, cd into TensorFlow\scripts\preprocessing and run:

# Create train data:
python xml_to_csv.py -i [PATH_TO_IMAGES_FOLDER]/train -o [PATH_TO_
→˓ANNOTATIONS_FOLDER]/train_labels.csv

(continues on next page)
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# Create test data:
python xml_to_csv.py -i [PATH_TO_IMAGES_FOLDER]/test -o [PATH_TO_
→˓ANNOTATIONS_FOLDER]/test_labels.csv

# For example
# python xml_to_csv.py -i C:\Users\sglvladi\Documents\TensorFlow\
→˓workspace\training_demo\images\train -o C:\Users\sglvladi\Documents\
→˓TensorFlow\workspace\training_demo\annotations\train_labels.csv
# python xml_to_csv.py -i C:\Users\sglvladi\Documents\TensorFlow\
→˓workspace\training_demo\images\test -o C:\Users\sglvladi\Documents\
→˓TensorFlow\workspace\training_demo\annotations\test_labels.csv

Once the above is done, there should be 2 new files under the training_demo\annotations folder, named
test_labels.csv and train_labels.csv, respectively.

3.5.2 Converting from *.csv to *.record

Now that we have obtained our *.csv annotation files, we will need to convert them into TFRecords. Below is an
example script that allows us to do just that:

"""
Usage:

# Create train data:
python generate_tfrecord.py --label=<LABEL> --csv_input=<PATH_TO_ANNOTATIONS_FOLDER>/
→˓train_labels.csv --output_path=<PATH_TO_ANNOTATIONS_FOLDER>/train.record

# Create test data:
python generate_tfrecord.py --label=<LABEL> --csv_input=<PATH_TO_ANNOTATIONS_FOLDER>/
→˓test_labels.csv --output_path=<PATH_TO_ANNOTATIONS_FOLDER>/test.record
"""

from __future__ import division
from __future__ import print_function
from __future__ import absolute_import

import os
import io
import pandas as pd
import tensorflow as tf
import sys
sys.path.append("../../models/research")

from PIL import Image
from object_detection.utils import dataset_util
from collections import namedtuple, OrderedDict

flags = tf.app.flags
flags.DEFINE_string('csv_input', '', 'Path to the CSV input')
flags.DEFINE_string('output_path', '', 'Path to output TFRecord')
flags.DEFINE_string('label', '', 'Name of class label')
# if your image has more labels input them as
# flags.DEFINE_string('label0', '', 'Name of class[0] label')
# flags.DEFINE_string('label1', '', 'Name of class[1] label')
# and so on.

(continues on next page)
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flags.DEFINE_string('img_path', '', 'Path to images')
FLAGS = flags.FLAGS

# TO-DO replace this with label map
# for multiple labels add more else if statements
def class_text_to_int(row_label):

if row_label == FLAGS.label: # 'ship':
return 1

# comment upper if statement and uncomment these statements for multiple labelling
# if row_label == FLAGS.label0:
# return 1
# elif row_label == FLAGS.label1:
# return 0
else:

None

def split(df, group):
data = namedtuple('data', ['filename', 'object'])
gb = df.groupby(group)
return [data(filename, gb.get_group(x)) for filename, x in zip(gb.groups.keys(),

→˓gb.groups)]

def create_tf_example(group, path):
with tf.gfile.GFile(os.path.join(path, '{}'.format(group.filename)), 'rb') as fid:

encoded_jpg = fid.read()
encoded_jpg_io = io.BytesIO(encoded_jpg)
image = Image.open(encoded_jpg_io)
width, height = image.size

filename = group.filename.encode('utf8')
image_format = b'jpg'
# check if the image format is matching with your images.
xmins = []
xmaxs = []
ymins = []
ymaxs = []
classes_text = []
classes = []

for index, row in group.object.iterrows():
xmins.append(row['xmin'] / width)
xmaxs.append(row['xmax'] / width)
ymins.append(row['ymin'] / height)
ymaxs.append(row['ymax'] / height)
classes_text.append(row['class'].encode('utf8'))
classes.append(class_text_to_int(row['class']))

tf_example = tf.train.Example(features=tf.train.Features(feature={
'image/height': dataset_util.int64_feature(height),
'image/width': dataset_util.int64_feature(width),
'image/filename': dataset_util.bytes_feature(filename),
'image/source_id': dataset_util.bytes_feature(filename),
'image/encoded': dataset_util.bytes_feature(encoded_jpg),
'image/format': dataset_util.bytes_feature(image_format),

(continues on next page)
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'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),
'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),
'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),
'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),
'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
'image/object/class/label': dataset_util.int64_list_feature(classes),

}))
return tf_example

def main(_):
writer = tf.python_io.TFRecordWriter(FLAGS.output_path)
path = os.path.join(os.getcwd(), FLAGS.img_path)
examples = pd.read_csv(FLAGS.csv_input)
grouped = split(examples, 'filename')
for group in grouped:

tf_example = create_tf_example(group, path)
writer.write(tf_example.SerializeToString())

writer.close()
output_path = os.path.join(os.getcwd(), FLAGS.output_path)
print('Successfully created the TFRecords: {}'.format(output_path))

if __name__ == '__main__':
tf.app.run()

• Create a new file with name generate_tfrecord.py under TensorFlow\scripts\
preprocessing, open it, paste the above code inside it and save.

• Once this is done, cd into TensorFlow\scripts\preprocessing and run:

# Create train data:
python generate_tfrecord.py --label=<LABEL> --csv_input=<PATH_TO_
→˓ANNOTATIONS_FOLDER>/train_labels.csv
--img_path=<PATH_TO_IMAGES_FOLDER>/train --output_path=<PATH_TO_
→˓ANNOTATIONS_FOLDER>/train.record

# Create test data:
python generate_tfrecord.py --label=<LABEL> --csv_input=<PATH_TO_
→˓ANNOTATIONS_FOLDER>/test_labels.csv
--img_path=<PATH_TO_IMAGES_FOLDER>/test
--output_path=<PATH_TO_ANNOTATIONS_FOLDER>/test.record

# For example
# python generate_tfrecord.py --label=ship --csv_input=C:\Users\sglvladi\
→˓Documents\TensorFlow\workspace\training_demo\annotations\train_labels.
→˓csv --output_path=C:\Users\sglvladi\Documents\TensorFlow\workspace\
→˓training_demo\annotations\train.record --img_path=C:\Users\sglvladi\
→˓Documents\TensorFlow\workspace\training_demo\images\train
# python generate_tfrecord.py --label=ship --csv_input=C:\Users\sglvladi\
→˓Documents\TensorFlow\workspace\training_demo\annotations\test_labels.
→˓csv --output_path=C:\Users\sglvladi\Documents\TensorFlow\workspace\
→˓training_demo\annotations\test.record --img_path=C:\Users\sglvladi\
→˓Documents\TensorFlow\workspace\training_demo\images\test

Once the above is done, there should be 2 new files under the training_demo\annotations folder, named
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test.record and train.record, respectively.

3.6 Configuring a Training Pipeline

For the purposes of this tutorial we will not be creating a training job from the scratch, but rather we will go through
how to reuse one of the pre-trained models provided by TensorFlow. If you would like to train an entirely new model,
you can have a look at TensorFlow’s tutorial.

The model we shall be using in our examples is the ssd_inception_v2_cocomodel, since it provides a relatively
good trade-off between performance and speed, however there are a number of other models you can use, all of
which are listed in TensorFlow’s detection model zoo. More information about the detection performance, as well as
reference times of execution, for each of the available pre-trained models can be found here.

First of all, we need to get ourselves the sample pipeline configuration file for the specific model we wish to re-
train. You can find the specific file for the model of your choice here. In our case, since we shall be using the
ssd_inception_v2_cocomodel, we shall be downloading the corresponding ssd_inception_v2_coco.config file.

Apart from the configuration file, we also need to download the latest pre-trained NN for the model we wish to use.
This can be done by simply clicking on the name of the desired model in the tables found in TensorFlow’s detection
model zoo. Clicking on the name of your model should initiate a download for a *.tar.gz file.

Once the *.tar.gz file has been downloaded, open it using a decompression program of your choice (e.g. 7zip,
WinZIP, etc.). Next, open the folder that you see when the compressed folder is opened (typically it will have the
same name as the compressed folded, without the *.tar.gz extension), and extract it’s contents inside the folder
training_demo\pre-trained-model.

Now that we have downloaded and extracted our pre-trained model, let’s have a look at the changes that we shall need
to apply to the downloaded *.config file (highlighted in yellow):

1 # SSD with Inception v2 configuration for MSCOCO Dataset.
2 # Users should configure the fine_tune_checkpoint field in the train config as
3 # well as the label_map_path and input_path fields in the train_input_reader and
4 # eval_input_reader. Search for "PATH_TO_BE_CONFIGURED" to find the fields that
5 # should be configured.
6

7 model {
8 ssd {
9 num_classes: 1 # Set this to the number of different label classes

10 box_coder {
11 faster_rcnn_box_coder {
12 y_scale: 10.0
13 x_scale: 10.0
14 height_scale: 5.0
15 width_scale: 5.0
16 }
17 }
18 matcher {
19 argmax_matcher {
20 matched_threshold: 0.5
21 unmatched_threshold: 0.5
22 ignore_thresholds: false
23 negatives_lower_than_unmatched: true
24 force_match_for_each_row: true
25 }
26 }
27 similarity_calculator {

(continues on next page)
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28 iou_similarity {
29 }
30 }
31 anchor_generator {
32 ssd_anchor_generator {
33 num_layers: 6
34 min_scale: 0.2
35 max_scale: 0.95
36 aspect_ratios: 1.0
37 aspect_ratios: 2.0
38 aspect_ratios: 0.5
39 aspect_ratios: 3.0
40 aspect_ratios: 0.3333
41 reduce_boxes_in_lowest_layer: true
42 }
43 }
44 image_resizer {
45 fixed_shape_resizer {
46 height: 300
47 width: 300
48 }
49 }
50 box_predictor {
51 convolutional_box_predictor {
52 min_depth: 0
53 max_depth: 0
54 num_layers_before_predictor: 0
55 use_dropout: false
56 dropout_keep_probability: 0.8
57 kernel_size: 3
58 box_code_size: 4
59 apply_sigmoid_to_scores: false
60 conv_hyperparams {
61 activation: RELU_6,
62 regularizer {
63 l2_regularizer {
64 weight: 0.00004
65 }
66 }
67 initializer {
68 truncated_normal_initializer {
69 stddev: 0.03
70 mean: 0.0
71 }
72 }
73 }
74 }
75 }
76 feature_extractor {
77 type: 'ssd_inception_v2' # Set to the name of your chosen pre-trained

→˓model
78 min_depth: 16
79 depth_multiplier: 1.0
80 conv_hyperparams {
81 activation: RELU_6,
82 regularizer {
83 l2_regularizer {

(continues on next page)
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84 weight: 0.00004
85 }
86 }
87 initializer {
88 truncated_normal_initializer {
89 stddev: 0.03
90 mean: 0.0
91 }
92 }
93 batch_norm {
94 train: true,
95 scale: true,
96 center: true,
97 decay: 0.9997,
98 epsilon: 0.001,
99 }

100 }
101 override_base_feature_extractor_hyperparams: true
102 }
103 loss {
104 classification_loss {
105 weighted_sigmoid {
106 }
107 }
108 localization_loss {
109 weighted_smooth_l1 {
110 }
111 }
112 hard_example_miner {
113 num_hard_examples: 3000
114 iou_threshold: 0.99
115 loss_type: CLASSIFICATION
116 max_negatives_per_positive: 3
117 min_negatives_per_image: 0
118 }
119 classification_weight: 1.0
120 localization_weight: 1.0
121 }
122 normalize_loss_by_num_matches: true
123 post_processing {
124 batch_non_max_suppression {
125 score_threshold: 1e-8
126 iou_threshold: 0.6
127 max_detections_per_class: 100
128 max_total_detections: 100
129 }
130 score_converter: SIGMOID
131 }
132 }
133 }
134

135 train_config: {
136 batch_size: 12 # Increase/Decrease this value depending on the available memory

→˓(Higher values require more memory and vice-versa)
137 optimizer {
138 rms_prop_optimizer: {
139 learning_rate: {

(continues on next page)
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140 exponential_decay_learning_rate {
141 initial_learning_rate: 0.004
142 decay_steps: 800720
143 decay_factor: 0.95
144 }
145 }
146 momentum_optimizer_value: 0.9
147 decay: 0.9
148 epsilon: 1.0
149 }
150 }
151 fine_tune_checkpoint: "pre-trained-model/model.ckpt" # Path to extracted files of

→˓pre-trained model
152 from_detection_checkpoint: true
153 # Note: The below line limits the training process to 200K steps, which we
154 # empirically found to be sufficient enough to train the pets dataset. This
155 # effectively bypasses the learning rate schedule (the learning rate will
156 # never decay). Remove the below line to train indefinitely.
157 num_steps: 200000
158 data_augmentation_options {
159 random_horizontal_flip {
160 }
161 }
162 data_augmentation_options {
163 ssd_random_crop {
164 }
165 }
166 }
167

168 train_input_reader: {
169 tf_record_input_reader {
170 input_path: "annotations/train.record" # Path to training TFRecord file
171 }
172 label_map_path: "annotations/label_map.pbtxt" # Path to label map file
173 }
174

175 eval_config: {
176 # (Optional): Uncomment the line below if you installed the Coco evaluation tools
177 # and you want to also run evaluation
178 # metrics_set: "coco_detection_metrics"
179 # (Optional): Set this to the number of images in your <PATH_TO_IMAGES_FOLDER>/

→˓train
180 # if you want to also run evaluation
181 num_examples: 8000
182 # Note: The below line limits the evaluation process to 10 evaluations.
183 # Remove the below line to evaluate indefinitely.
184 max_evals: 10
185 }
186

187 eval_input_reader: {
188 tf_record_input_reader {
189 input_path: "annotations/test.record" # Path to testing TFRecord
190 }
191 label_map_path: "annotations/label_map.pbtxt" # Path to label map file
192 shuffle: false
193 num_readers: 1
194 }
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It is worth noting here that the changes to lines 178 and 181 above are optional. These should only be used if you
installed the COCO evaluation tools, as outlined in the COCO API installation (Optional) section, and you intend to
run evaluation (see Evaluating the Model (Optional)).

Once the above changes have been applied to our config file, go ahead and save it under training_demo/
training.

3.7 Training the Model

Standard

Note: This tab describes the training process using Tensorflow’s new model training script, namely model_main.
py, as suggested by the Tensorflow Object Detection docs. The advantage of using this script is that it interleaves
training and evaluation, essentially combining the train.py and eval.py Legacy scripts.

If instead you would like to use the legacy train.py script, switch to the Legacy tab.

Before we begin training our model, let’s go and copy the TensorFlow/models/research/
object_detection/model_main.py script and paste it straight into our training_demo folder. We
will need this script in order to train our model.

Now, to initiate a new training job, cd inside the training_demo folder and type the following:

python model_main.py --alsologtostderr --model_dir=training/ --pipeline_config_
→˓path=training/ssd_inception_v2_coco.config

Once the training process has been initiated, you should see a series of print outs similar to the one below (plus/minus
some warnings):

INFO:tensorflow:depth of additional conv before box predictor: 0
INFO:tensorflow:depth of additional conv before box predictor: 0
INFO:tensorflow:depth of additional conv before box predictor: 0
INFO:tensorflow:depth of additional conv before box predictor: 0
INFO:tensorflow:depth of additional conv before box predictor: 0
INFO:tensorflow:depth of additional conv before box predictor: 0
INFO:tensorflow:Restoring parameters from ssd_inception_v2_coco_2017_11_17/model.ckpt
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Saving checkpoints for 0 into training\model.ckpt.
INFO:tensorflow:loss = 16.100115, step = 0
...

Important: The output will normally look like it has “frozen” after the loss for step 0 has been logged, but DO NOT
rush to cancel the process. The training outputs logs only every 100 steps by default, therefore if you wait for a while,
you should see a log for the loss at step 100.

The time you should wait can vary greatly, depending on whether you are using a GPU and the chosen value for
batch_size in the config file, so be patient.

Legacy

Before we begin training our model, let’s go and copy the TensorFlow/models/research/
object_detection/legacy/train.py script and paste it straight into our training_demo folder.
We will need this script in order to train our model.
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Now, to initiate a new training job, cd inside the training_demo folder and type the following:

python train.py --logtostderr --train_dir=training/ --pipeline_config_path=training/
→˓ssd_inception_v2_coco.config

Once the training process has been initiated, you should see a series of print outs similar to the one below (plus/minus
some warnings):

INFO:tensorflow:depth of additional conv before box predictor: 0
INFO:tensorflow:depth of additional conv before box predictor: 0
INFO:tensorflow:depth of additional conv before box predictor: 0
INFO:tensorflow:depth of additional conv before box predictor: 0
INFO:tensorflow:depth of additional conv before box predictor: 0
INFO:tensorflow:depth of additional conv before box predictor: 0
INFO:tensorflow:Restoring parameters from ssd_inception_v2_coco_2017_11_17/model.ckpt
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Starting Session.
INFO:tensorflow:Saving checkpoint to path training\model.ckpt
INFO:tensorflow:Starting Queues.
INFO:tensorflow:global_step/sec: 0
INFO:tensorflow:global step 1: loss = 13.8886 (12.339 sec/step)
INFO:tensorflow:global step 2: loss = 16.2202 (0.937 sec/step)
INFO:tensorflow:global step 3: loss = 13.7876 (0.904 sec/step)
INFO:tensorflow:global step 4: loss = 12.9230 (0.894 sec/step)
INFO:tensorflow:global step 5: loss = 12.7497 (0.922 sec/step)
INFO:tensorflow:global step 6: loss = 11.7563 (0.936 sec/step)
INFO:tensorflow:global step 7: loss = 11.7245 (0.910 sec/step)
INFO:tensorflow:global step 8: loss = 10.7993 (0.916 sec/step)
INFO:tensorflow:global step 9: loss = 9.1277 (0.890 sec/step)
INFO:tensorflow:global step 10: loss = 9.3972 (0.919 sec/step)
INFO:tensorflow:global step 11: loss = 9.9487 (0.897 sec/step)
INFO:tensorflow:global step 12: loss = 8.7954 (0.884 sec/step)
INFO:tensorflow:global step 13: loss = 7.4329 (0.906 sec/step)
INFO:tensorflow:global step 14: loss = 7.8270 (0.897 sec/step)
INFO:tensorflow:global step 15: loss = 6.4877 (0.894 sec/step)
...

If you ARE observing a similar output to the above, then CONGRATULATIONS, you have successfully started your
first training job. Now you may very well treat yourself to a cold beer, as waiting on the training to finish is likely
to take a while. Following what people have said online, it seems that it is advisable to allow you model to reach
a TotalLoss of at least 2 (ideally 1 and lower) if you want to achieve “fair” detection results. Obviously, lower
TotalLoss is better, however very low TotalLoss should be avoided, as the model may end up overfitting the
dataset, meaning that it will perform poorly when applied to images outside the dataset. To monitor TotalLoss, as
well as a number of other metrics, while your model is training, have a look at Monitor Training Job Progress using
TensorBoard.

If you ARE NOT seeing a print-out similar to that shown above, and/or the training job crashes after a few seconds,
then have a look at the issues and proposed solutions, under the Common issues section, to see if you can find a
solution. Alternatively, you can try the issues section of the official Tensorflow Models repo.

Note: Training times can be affected by a number of factors such as:

• The computational power of you hardware (either CPU or GPU): Obviously, the more powerful your PC is, the
faster the training process.

• Whether you are using the TensorFlow CPU or GPU variant: In general, even when compared to the best CPUs,
almost any GPU graphics card will yield much faster training and detection speeds. As a matter of fact, when I
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first started I was running TensorFlow on my Intel i7-5930k (6/12 cores @ 4GHz, 32GB RAM) and was getting
step times of around 12 sec/step, after which I installed TensorFlow GPU and training the very same model
-using the same dataset and config files- on a EVGA GTX-770 (1536 CUDA-cores @ 1GHz, 2GB VRAM) I was
down to 0.9 sec/step!!! A 12-fold increase in speed, using a “low/mid-end” graphics card, when compared to a
“mid/high-end” CPU.

• How big the dataset is: The higher the number of images in your dataset, the longer it will take for the model to
reach satisfactory levels of detection performance.

• The complexity of the objects you are trying to detect: Obviously, if your objective is to track a black ball
over a white background, the model will converge to satisfactory levels of detection pretty quickly. If on the
other hand, for example, you wish to detect ships in ports, using Pan-Tilt-Zoom cameras, then training will be a
much more challenging and time-consuming process, due to the high variability of the shape and size of ships,
combined with a highly dynamic background.

• And many, many, many, more. . . .

3.8 Evaluating the Model (Optional)

By default, the training process logs some basic measures of training performance. These seem to change depending on
the installed version of Tensorflow and the script used for training (i.e. model_main.py (Standard) or train.py
(Legacy)).

As you will have seen in various parts of this tutorial, we have mentioned a few times the optional utilisation of the
COCO evaluation metrics. Also, under section _image_partitioning_sec we partitioned our dataset in two parts, where
one was to be used for training and the other for evaluation. In this section we will look at how we can use these
metrics, along with the test images, to get a sense of the performance achieved by our model as it is being trained.

Firstly, let’s start with a brief explanation of what the evaluation process does. While the training process runs, it will
occasionally create checkpoint files inside the training_demo/training folder, which correspond to snapshots
of the model at given steps. When a set of such new checkpoint files is generated, the evaluation process uses these
files and evaluates how well the model performs in detecting objects in the test dataset. The results of this evaluation
are summarised in the form of some metrics, which can be examined over time.

The steps to run the evaluation are outlined below:

1. Firstly we need to download and install the metrics we want to use.

• For a description of the supported object detection evaluation metrics, see here.

• The process of installing the COCO evaluation metrics is described in COCO API installation (Optional).

2. Secondly, we must modify the configuration pipeline (*.config script).

• See lines 178 and 181 of the script in Configuring a Training Pipeline.

3. The third step depends on what method (script) was used when staring the training in Training the Model. See
below for details:

Standard

The model_main.py script interleaves training and evaluation. Therefore, assuming that the fol-
lowing two steps were followed correctly, nothing else needs to be done.

Legacy

When using the Legacy scripts, evaluation is run using the eval.py script. This is done as follows:

• Copy the TensorFlow/models/research/object_detection/legacy/eval.
py script and paste it inside the training_demo folder.
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• Now, to initiate an evaluation job, cd inside the training_demo folder and type the follow-
ing:

python eval.py --logtostderr --pipeline_config_path=training/
→˓ssd_inception_v2_coco.config --checkpoint_dir=training/ --
→˓eval_dir=training/eval_0

While the evaluation process is running, it will periodically (every 300 sec by default) check and use the latest
training/model.ckpt-* checkpoint files to evaluate the performance of the model. The results are stored
in the form of tf event files (events.out.tfevents.*) inside training/eval_0. These files can then be
used to monitor the computed metrics, using the process described by the next section.

3.9 Monitor Training Job Progress using TensorBoard

A very nice feature of TensorFlow, is that it allows you to coninuously monitor and visualise a number of differ-
ent training/evaluation metrics, while your model is being trained. The specific tool that allows us to do all that is
Tensorboard.

To start a new TensorBoard server, we follow the following steps:

• Open a new Anaconda/Command Prompt

• Activate your TensorFlow conda environment (if you have one), e.g.:

activate tensorflow_gpu

• cd into the training_demo folder.

• Run the following command:

tensorboard --logdir=training\

The above command will start a new TensorBoard server, which (by default) listens to port 6006 of your machine.
Assuming that everything went well, you should see a print-out similar to the one below (plus/minus some warnings):

TensorBoard 1.6.0 at http://YOUR-PC:6006 (Press CTRL+C to quit)

Once this is done, go to your browser and type http://YOUR-PC:6006 in your address bar, following which you
should be presented with a dashboard similar to the one shown below (maybe less populated if your model has just
started training):
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3.10 Exporting a Trained Inference Graph

Once your training job is complete, you need to extract the newly trained inference graph, which will be later used to
perform the object detection. This can be done as follows:

• Open a new Anaconda/Command Prompt

• Activate your TensorFlow conda environment (if you have one), e.g.:

activate tensorflow_gpu

• Copy the TensorFlow/models/research/object_detection/export_inference_graph.
py script and paste it straight into your training_demo folder.

• Check inside your training_demo/training folder for the model.ckpt-* checkpoint file with the
highest number following the name of the dash e.g. model.ckpt-34350). This number represents the
training step index at which the file was created.

• Alternatively, simply sort all the files inside training_demo/training by descending time and pick the
model.ckpt-* file that comes first in the list.

• Make a note of the file’s name, as it will be passed as an argument when we call the
export_inference_graph.py script.

• Now, cd inside your training_demo folder, and run the following command:

python export_inference_graph.py --input_type image_tensor --pipeline_config_path
→˓training/ssd_inception_v2_coco.config --trained_checkpoint_prefix training/model.
→˓ckpt-13302 --output_directory trained-inference-graphs/output_inference_graph_v1.pb
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FOUR

COMMON ISSUES

Below is a list of common issues encountered while using TensorFlow for objects detection.

4.1 Python crashes - TensorFlow GPU

If you are using TensorFlow GPU and when you try to run some Python object detection script (e.g. Test your Instal-
lation), after a few seconds, Windows reports that Python has crashed then have a look at the Anaconda/Command
Prompt window you used to run the script and check for a line similar (maybe identical) to the one below:

2018-03-22 03:07:54.623130: E C:\tf_jenkins\workspace\rel-win\M\windows-gpu\
→˓PY\36\tensorflow\stream_executor\cuda\cuda_dnn.cc:378] Loaded runtime
→˓CuDNN library: 7101 (compatibility version 7100) but source was compiled
→˓with 7003 (compatibility version 7000). If using a binary install,
→˓upgrade your CuDNN library to match. If building from sources, make sure
→˓the library loaded at runtime matches a compatible version specified
→˓during compile configuration.

If the above line is present in the printed debugging, it means that you have not installed the correct version of the
cuDNN libraries. In this case make sure you re-do the Install CUDNN step, making sure you instal cuDNN v7.0.5.

4.2 Cleaning up Nvidia containers (TensorFlow GPU)

Sometimes, when terminating a TensorFlow training process, the Nvidia containers associated to the process are not
cleanly terminated. This can lead to bogus errors when we try to run a new TensorFlow process.

Some known issues caused by the above are presented below:

• Failure to restart training of a model. Look for the following errors in the debugging:

2018-03-23 03:03:10.326902: E C:\tf_jenkins\workspace\rel-win\M\windows-
→˓gpu\PY\36\tensorflow\stream_executor\cuda\cuda_dnn.cc:385] could not
→˓create cudnn handle: CUDNN_STATUS_ALLOC_FAILED
2018-03-23 03:03:10.330475: E C:\tf_jenkins\workspace\rel-win\M\windows-
→˓gpu\PY\36\tensorflow\stream_executor\cuda\cuda_dnn.cc:352] could not
→˓destroy cudnn handle: CUDNN_STATUS_BAD_PARAM
2018-03-23 03:03:10.333797: W C:\tf_jenkins\workspace\rel-win\M\windows-
→˓gpu\PY\36\tensorflow/stream_executor/stream.h:1983] attempting to
→˓perform DNN operation using StreamExecutor without DNN support
2018-03-23 03:03:10.333807: I C:\tf_jenkins\workspace\rel-win\M\windows-
→˓gpu\PY\36\tensorflow\stream_executor\stream.cc:1851] stream
→˓00000216F05CB660 did not wait for stream: 00000216F05CA6E0

(continues on next page)
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2018-03-23 03:03:10.340765: I C:\tf_jenkins\workspace\rel-win\M\windows-
→˓gpu\PY\36\tensorflow\stream_executor\stream.cc:4637] stream
→˓00000216F05CB660 did not memcpy host-to-device; source: 000000020DB37B00
2018-03-23 03:03:10.343752: F C:\tf_jenkins\workspace\rel-win\M\windows-
→˓gpu\PY\36\tensorflow\core\common_runtime\gpu\gpu_util.cc:343] CPU->GPU
→˓Memcpy failed

To solve such issues in Windows, open a Task Manager windows, look for Tasks with name NVIDIA Container
and kill them by selecting them and clicking the End Task button at the bottom left corner of the window.

If the issue persists, then you’re probably running out of memory. Try closing down anything else that might be eating
up your GPU memory (e.g. Youtube videos, webpages etc.)

4.3 labelImg saves annotation files with .xml.xml extension

At the time of writing up this document, I haven’t managed to identify why this might be happening. I have joined a
GitHub issue, at which you can refer in case there are any updates.

One way I managed to fix the issue was by clicking on the “Change Save Dir” button and selecting the directory where
the annotations files should be stores. By doing so, you should not longer get a pop-up dialog when you click “Save”
(or Ctrl+s), but you can always check if the file was saved by looking at the bottom left corner of labelImg.

4.4 “WARNING:tensorflow:Entity <bound method X of <Y>> could
not be transformed . . . ”

In some versions of Tensorflow, you may see errors that look similar to the ones below:

...
WARNING:tensorflow:Entity <bound method Conv.call of <tensorflow.python.layers.
→˓convolutional.Conv2D object at 0x000001E92103EDD8>> could not be transformed and
→˓will be executed as-is. Please report this to the AutgoGraph team. When filing the
→˓bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach
→˓the full output. Cause: converting <bound method Conv.call of <tensorflow.python.
→˓layers.convolutional.Conv2D object at 0x000001E92103EDD8>>: AssertionError: Bad
→˓argument number for Name: 3, expecting 4
WARNING:tensorflow:Entity <bound method BatchNormalization.call of <tensorflow.python.
→˓layers.normalization.BatchNormalization object at 0x000001E9225EBA90>> could not be
→˓transformed and will be executed as-is. Please report this to the AutgoGraph team.
→˓When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_
→˓VERBOSITY=10`) and attach the full output. Cause: converting <bound method
→˓BatchNormalization.call of <tensorflow.python.layers.normalization.
→˓BatchNormalization object at 0x000001E9225EBA90>>: AssertionError: Bad argument
→˓number for Name: 3, expecting 4
...

These warnings appear to be harmless form my experience, however they can saturate the console with unnecessary
messages, which makes it hard to scroll through the output of the training/evaluation process.

As reported here, this issue seems to be caused by a mismatched version of gast. Simply downgrading gast to version
0.2.2 seems to remove the warnings. This can be done by running:

pip install gast==0.2.2
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• genindex

• modindex

• search
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